Exploring Student Choice and the Use of Multimodal Generative
Al in Programming Learning

Xinying Hou"
University of Michigan
Ann Arbor, United States
xyhou@umich.edu

Michael Liut
University of Toronto Mississauga
Mississauga, Canada
michael liut@utoronto.ca

Abstract

The broad adoption of Generative Al (GenAl) is impacting Com-
puter Science education, and recent studies found its benefits and
potential concerns when students use it for programming learning.
However, most existing explorations focus on GenAl tools that
primarily support text-to-text interaction. With recent develop-
ments, GenAl applications have begun supporting multiple modes
of communication, known as multimodality. In this work, we ex-
plored how undergraduate programming novices choose and work
with multimodal GenAl tools, and their criteria for choices. We
selected a commercially available multimodal GenAlI platform for
interaction, as it supports multiple input and output modalities,
including text, audio, image upload, and real-time screen-sharing.
Through 16 think-aloud sessions that combined participant obser-
vation with follow-up semi-structured interviews, we investigated
student modality choices for GenAlI tools when completing pro-
gramming problems and the underlying criteria for modality selec-
tions. With multimodal communication emerging as the future of
Al in education, this work aims to spark continued exploration on
understanding student interaction with multimodal GenAlI in the
context of CS education.

CCS Concepts

« Social and professional topics — Computing education; «
Applied computing — Interactive learning environments;
Computer-assisted instruction.

Keywords

Multi-modality, Multimodal Generative Al, CS Education, Multi-
modal Learning, Multimedia, Modal Preferences

ACM Reference Format:

Xinying Hou, Ruiwei Xiao, Runlong Ye, Michael Liut, and John Stamper.
2026. Exploring Student Choice and the Use of Multimodal Generative
Al in Programming Learning. In Proceedings of the 57th ACM Technical

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCSE TS 2026, St. Louis, MO, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2256-1/26/02

https://doi.org/10.1145/3770762.3772548

Ruiwei Xiao®
Carnegie Mellon University
Pittsburgh, United States
ruiweix@andrew.cmu.edu

Runlong Ye
University of Toronto
Toronto, Canada
harryye@cs.toronto.edu

John Stamper
Carnegie Mellon University
Pittsburgh, United States
jstamper@cmu.edu

Symposium on Computer Science Education V.1 (SIGCSE TS 2026), February
18-21, 2026, St. Louis, MO, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3770762.3772548

1 Introduction

Computing education is increasingly impacted by the development
of Generative Al (GenAlI) technologies. Previous studies have ex-
plored how students interact with GenAl applications in the context
of programming education [1, 40]. However, as GenAl technologies
continue to develop, while the mainstream remains focused on
text-to-text interaction, support for multimodal interactions is be-
coming increasingly common. Previous studies have evaluated the
technical ability of multimodal GenAl models in solving visually
heavy programming problems and tasks with text-plus-image or
image-only input [19, 20]. Latest studies also tested the capabili-
ties in solving multimodal CS exercises [32]. While the evaluation
of multimodal GenAI models’ capability is extensively tested, stu-
dents’ modality choices in student-GenAlI interactions and their
underlying reasons are still underexplored.

Although GenAl applications incorporating multimodal features
are still emerging in educational research, a substantial body of
work on multimodal learning already exists. In educational con-
texts, multimodal learning refers to instructional environments that
engage learners through multiple sensory modalities (e.g., visual,
auditory) [34]. This concept builds on Mayer’s Cognitive Theory of
Multimedia Learning [29], which emphasizes the complementary
and integrated use of multiple modalities to enhance understanding.
Prior research has explored multimodal learning across diverse ed-
ucational contexts (e.g., programming education [17], collaborative
learning [42]), demonstrating its effectiveness in supporting learner
engagement and instructional interventions [8, 13, 17] through en-
riched forms of instructional delivery.

In this work, we applied Google AI Studio”* as the GenAl interac-
tion platform, which features two primary components: Chat and
Stream Realtime. Chat allows multiple input modalities, such as text
and image/file, but its main output modality is text only (including
formatted code). Stream Realtime allows various input and output
modalities. Its input modalities include screen sharing, audio, text,
and images, and the output modalities are audio and the corre-
sponding transcript. We conducted a think-aloud study followed by
semi-structured interviews with 16 undergraduate programming

“https://aistudio.google.com/

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3770762.3772548
https://doi.org/10.1145/3770762.3772548
https://doi.org/10.1145/3770762.3772548

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

novices. Students were allowed to choose their preferred modality
to solve two types of short programming tasks. Throughout this
study, we aimed to explore two main RQs:
RQ1: What input-output modalities do students choose when
solving short programming tasks, and how do they use it?
RQ2: What do students consider when choosing modalities to
interact with Al for programming learning?

2 Related Work

Al-based Educational Tools in CS: a Text-Focused Approach. The
rapid advancement of large language models (LLMs) has initiated
a surge of research in computing education [9, 33]. The commu-
nity responses are mixed, recognizing the disruptive potential [5]
while raising concerns about academic integrity, overreliance, and
hallucination [23, 24]. The shift toward pedagogical use of LLMs
led to custom educational tools with “pedagogical guardrails”, such
as offering scaffolded assistance without revealing direct solutions
[21, 24] and improved student guidance strategies [25]. More ways
to teach prompt crafting have also appeared, developing students’
prompting skills via new exercises [12] and through dedicated
interactive instruction [41]. Besides these, studies on student Al
help-seeking have provided crucial insights, alongside broader in-
vestigations of student perceptions on conversational chatbots used
for programming learning [1, 23]. The field is thus moving beyond
technical feasibility to a nuanced exploration of how LLMs can
serve CS education better. The research to date, however, has been
predominantly focused on text-, prompt-, and code-based interac-
tions. While this work provides a critical foundation, the recent
emergence of capable multimodal models, which can interpret vi-
sual and auditory inputs, is beginning to enable novel programming
interactions.

Emergence of Coding with Multimodal GenAI Models. An emerg-
ing research area is on frontier multimodal models (e.g., GPT-03,
Gemini 2.5, Claude 4) that translate visual and speaking inputs
into functional code. Research is rapidly demonstrating its tech-
nical feasibility across several modalities. These advanced models
can process a diverse range of inputs, such as images, sketches,
voice, live videos, and can respond to various formats, including
code, natural language explanations, or spoken responses . Within
the programming domain, early exploration has focused on visual-
to-code generation. For instance, models can now interpret static
images of diagrams to generate code for formats like UML [4] or
solve visual educational exercises like Parsons puzzles and data
structure tasks [19, 20]. This capability extends to translating UI
sketches into runnable webpages, a task that is being systematically
improved via open benchmarks [22, 26]. The interaction can be
more dynamic, with tools that interpret freeform sketches drawn
directly onto the code editor to perform iterative modifications [43].
Auditory inputs are also being explored, primarily for using voice
commands to create or manipulate code, which offers promise for
accessibility [39], and has prompted research into programmers’
natural speaking patterns [31].

However, existing research has focused almost solely on techni-
cal performance, largely overlooking the pedagogical implications

TechCrunch: OpenAl rolls out Advanced Voice Mode with more voices and a
new look

Xinying Hou et al.

Problem Description

Example Input 1 Example Output 1
Example Input2 Example Output 2
Example Input 3 Example Output 3

Problem Description

Example Input 1 Example Output 1
Example Input 2 Example Output 2
Example Input 3 Example Output 3

Show Code Visualization

def function():

Block Panel - Drag to use Solution Panel - Drag blocks here

|
Mixed-up Code Block 1 Mixed-up Code Block 3

Mixed-up CodeBlock2 | [L] e

return
Mixed-up Code Block 4

Mixed-up Code Block 5 output: ...

(oo | o |

Figure 1: Two practice problem types in the study

and the student experience. Our work begins to address this critical
gap by shifting the focus from model capability to a student-centric
exploration of how these unique modalities are perceived and used.

Theoretical Foundations for Multimodal Learning. Our investiga-
tion is grounded in foundational learning theories that multimodal
approaches can enhance computing education. Given program-
ming’s high mental demand, Cognitive Load Theory (CLT) sug-
gests minimizing extraneous load; multimodal tools achieve this
by allowing students to use voice and screenshare instead of manu-
ally describing complex code states, freeing up working memory
[35, 36]. This cognitive offloading is complemented by Mayer’s
Cognitive Theory of Multimedia Learning (CTML), which reasons
that learning is most effective when both visual (seeing code) and
auditory (hearing the AI) channels are engaged simultaneously
[29]. Finally, the theory of situated cognition argues for learning in
authentic contexts [7], which a multimodal Al enables by operat-
ing directly in a student’s programming environment as a “More
Knowledgeable Other” providing precisely scaffolded support [38].

3 Methods

To answer RQs, we conducted a study with undergraduate students
recruited from a large public university in North America. We dis-
tributed a recruitment message to students who had just completed
an introductory-level undergraduate Python course (CS1) in Spring
2025. The observations were conducted remotely through Zoom,
with each session lasting approximately 90 minutes. Each student
received a $20/hour gift card after completing the study. The study
is approved by the Institutional Review Board (IRB).

3.1 Materials

3.1.1 Practice Tasks. We selected two challenging programming
tasks from a popular technical interview database, cross-referencing
them with the course syllabus to ensure an appropriate level of
difficulty. The tasks were designed to be difficult enough to en-
courage students to naturally use GenAl for assistance, rather than
solving them independently. To investigate how programming task
formats affect students’ modality choices, we made one task into
a mixed-up code puzzle and another into a short program writing
task. A mixed-up code puzzle (Parsons puzzle) requires students to
put all the mixed-up code blocks into a correct order to solve [14].
We chose a two-dimensional code puzzle that required students to
position blocks correctly both vertically and horizontally to solve it
(Figure 1-left). A short programming task requires students to write
code from scratch and pass the built-in unit test cases to complete

https://techcrunch.com/2024/09/24/openai-rolls-out-advanced-voice-mode-with-more-voices-and-a-new-look/
https://techcrunch.com/2024/09/24/openai-rolls-out-advanced-voice-mode-with-more-voices-and-a-new-look/

Exploring Student Choice and the Use of Multimodal Generative Al in Programming Learning

() Output

default: gemini-2.5-pro

ﬁ Input

() Typing prompts and questions.

- @: You can start by initializing 2 pointers,
— " one for each string, usually starting at
~ the beginning of each string ...

@ “I have started the code, but | would like a hint ...”
- /

\/y ing prompts and questions.)
(B yping promptsand g)

\\\ Uploading documents or image.)

Figure 2: Main Al interaction modalities in this study. In
Chat, students can use typed input or upload images and doc-
uments. Al processes input into text output. In Stream, the
students can speak through a microphone, share screen, type,
or upload files. AI then processes this information stream to
produce a dynamic output with audio and a transcript.

it (Figure 1-right). The two questions can be solved only using the
concepts covered in the course.

3.1.2 Covered Al Input-Output Modalities. We outlined diverse

input-output modality choices in the context of programming problem-

solving (Figure 2). We selected Google Al Studio to carry out our
study as it offered a comprehensive suite of modalities. The primary
input modalities we introduced to students included: (1) text, al-
lowing students to type queries, including natural language and/or
code; (2) file upload, where students can upload images (e.g., screen-
shots, focus of this study given the question type) or documents;
(3) speech, allowing students to speak directly into a microphone;
and (4) screen-sharing, where students can manipulate on-screen
content (e.g., by highlighting, scrolling, or editing) and speak at the
same time. The output modalities included: (a) text, written answers
in the Al user interface, often with formatted code; and (b) audio
(with written transcripts), which delivers an audio response with a
real-time written transcript in the Al user interface.

3.2 Procedure

The study started after verifying eligibility and obtaining consent
to record. Participating students first completed a survey on their
use of generative Al Recognizing that multimodal GenAl is still
new to most students, we then included a warm-up session to

, N\
() Generates text-based responses.
13 (\
Write a function is_subsequencel(s, t): Given two Of course. Here is a Python function
strings s and t, return True if s is a subsequence of t, is_subsequence that solves the problem, along
or False otherwise. with explanations and alternative
implementations.
is_subsequence("abc’, "ahbgdc") » True
is_subsequence("abc", "a") - False
”
N _
[{E Uploading documents or image.
“How can | solve this? . ®
Here is how it works:
sereenshot.prg
”
\ J J
default: gemini-2.5-flash-
'|| | Stream preview-native-audio-dialog
AY s
@ Speaking directly to the model. il Generates spoken response.
173 . . .
How would I go about finding the length of L; Pro‘”de.s a written t':ansc"pt of
) the longest piece of a string that doesn't the audio conversation.
* have any duplicate characters? p
\ ’,,/ » 000/003 o i
. . . N You can start by initializing 2 pointers, one for
Sharing real-time live screen each string, usually starting at the beginning of
(13 each string ...

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

help students familiarize themselves with different AI modalities.
After a 5-minute introductory video, students tackled two warm-
up examples that used the same format as the primary practice
but covered different topics. Researchers encouraged students to
engage with every modality when working with the example tasks,
followed by a short think-aloud training.

Following the warm-up session, students engaged in the main
practice session. They were asked to complete two programming
tasks on an online learning platform (one mixed-up code puzzle
and one short programming task) using Al Studio while thinking
aloud. Students were allowed to choose whatever input and output
modalities they preferred during this practice. Participants were
given approximately 15 minutes per task but were instructed to
use the Al for assistance in whatever way felt most natural, rather
than focusing on completing the task. Due to time constraints,
we did not have participants solve another long, open-ended pro-
gramming task in this session. Instead, we asked them to bring a
completed project from the course (including the project descrip-
tion and their code) that they found most challenging. Students
were then asked to compare their past experience with the project
with the potential benefits of multimodal GenAlI Then, we con-
ducted a semi-structured interview about their practice experience,
focusing on modality choices and corresponding reasons. The study
ended with a short demographic survey. The study protocol was
tested and refined with three pilot testings. After that, the study
was conducted and recorded with a total of 16 participants.

3.3 Data Analysis

To answer RQ1, we applied thematic analysis to analyze students’
behaviors using inductive coding [2]. We analyzed the video record-
ings and their transcripts. Two researchers first familiarized them-
selves with the data and generated an initial set of codes. They
then created a codebook and independently coded the materials,
resulting an IRR of cohen’s kappa > 0.66 (substantial agreement
[30]) for the independent coding results. After that, they met to
discuss and resolved all the disagreements. Results are presented
in Section 4.1. For RQ2, we conducted a reflexive thematic analysis
[6] to understand students’ criteria for choosing modalities. Two
researchers went through all relevant data to develop initial themes.
They then met to discuss, refine, and name each theme, they also re-
visited the data to identify additional supporting quotes. The results
are presented in Section 4.2, with each bolded phrase indicating
a distinct theme. For reporting, students were referenced by their
PID (e.g., P1 to P16) to maintain anonymity and consistency.

4 Results

We have 16 participants, with 6 identified as women, 9 as men, and
1 undisclosed. Students showed a diverse language background.
Although English is the official language at the institution, the
primary language spoken at home varied: 3 spoke only English, 4
spoke primarily English, 4 spoke another language primarily, with
five bilingual. All participants had experience with commercial
GenAl tools, such as ChatGPT, Gemini, Claude, or GitHub Copilot.

4.1 What & How: Students’ Input-Output
Modality Choices

While solving programming tasks with multimodal GenAlI, students
needed to make modality choices (intentionally or unintentionally)

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

in three main aspects: 1) context input modality: choose a modality
to give Al their current context information; 2) instruction input
modality: choose a modality to let Al know their needs; and 3) out-
put delivery modality: choose a modality to obtain the Al-generated
information. We first reported the context input modalities cho-
sen by the students, followed by their associated instruction input
modalities and Al-generated output delivery modalities.

Students used Al for varied goals when solving the programming
tasks. We identified, categorized, and grouped unique student-Al
interaction patterns. Then we reported the counts as the number of
“cases”. In this study, students used Al to understand the problem
better (11 cases), to get an idea to solve the problem (7 cases), to
check their existing ideas (4 cases), to get support when imple-
menting a solution (27 cases), to verify their current solution (13
cases), and to debug (10 cases). However, we did not observe clear
differences in Al usage among diverse modality choices. Therefore,
instead of comparing, we mainly described how students interacted
with Al through different modalities. We used “speaking” to refer to
students’ speaking input, [behaviors] refers to observed students’
behaviors, and typed input refers to students’ typed input.

4.1.1 Screen-Sharing. In over half of the context input modality
selections, students chose to use screen-sharing (18 cases) to in-
put problem-solving context, including problem and progress. Of
these, in 15 cases (83%), students selected speaking as their instruc-
tion input modality. For example, after reading the description and
dragging three blocks, P2 used Al to understand the problem better:

[P2 shared the screen with problem description, examples, and
progress] P2 (speaking): “Can you help clarify this question, and
on example two?”

Al (audio): “The question is asking to find the maximum number
of vowel letters within any substring of a given string s..”

With the shared screen, in 3 cases (17%), students chose typing
as the input modality for instruction. A notable example was P5,
who switched from speech to type in the middle of problem-solving
and explained it as "I may want to type so I have more time to form
question." Once they had written and tested the code, P5 used Al to
get hints to continue on an unfinished solution:

[P5 shared the screen with problem description, examples, and
progress] P5 (typing): I have started the code but I would
like a hint as to how to go about the order (please
ignore the "abc cdafgb abc" on the side of the screen,
as that was just temporary).

Al (audio): “ You could try using two pointers” [P5 closed the
audio, but carefully read the transcript]

For the output modality to receive Al answers, in 15 cases (84%),
the students chose to listen to a human-like voice audio while
looking at the shared practice task screen and made modifications
on that screen. For example, after finishing dragging some blocks
to the solution area, P9 asked Al when they came up with a partial
solution, but did not know how to continue:

Xinying Hou et al.

[P9 shared the screen with problem description, examples, and
progress]

P9 (speaking): “okay, I'm doing a problem here.” [used the mouse
to highlight the problem description area] “and the prompt is
provided here”. [mouse circulated the right solution panel] “and
this is what I have so far on the right, am I on the right track, or
what should I be doing?”

Al (audio): ... [P9 looked at the practice task screen]

P9 (speaking): “Okay and then” [dragged two blocks to the so-
lution panel] “if I make this change, am I doing the right thing
here? would it decrease the vowel count?”

Al (audio): ... [P9 looked at the practice task screen, mouse idle]

At times, students chose to switch to the Stream interface and
read the paired textual transcript. Some still kept the audio on, but
some closed the audio and just read the transcript (as P5 above).
After reading the problem description, P4 used Al to get some ideas
and also a code solution. While sharing the screen on the problem
description, P4 returned to the Stream interface to read the textual
transcript while listening to the human-like Al audio:

[P4 shared the screen of the problem description and the code
example] P4 (speaking): “Can you hear me?”

Al (audio): “Yes, I can hear you clearly. How can I help you
today?”

P4 (speaking): “Great. So I want to write this function. And I'm
wondering how I can start it.”

Al (audio): “You can start by initializing 2 pointers, one for each
string, usually starting at ... Then you can ..”

P4 (speaking): “So can you show me how to write that in code?”
Al (audio): “Sure, you can initialize 2 pointers, say i and j to 0,
then use ..” [P9 looked at the Al Stream interface, and read the
transcript with continuous mouse movement]

In two cases, students even copied the code lines from the tran-
script to their problem area. For example, P3 found a detail in the
corresponding transcript and copied it to their code entry box:

P3 (speaking): “Help me finish the slicing approach then.” [used
the mouse to highlight two code lines] “does that make sense or
should I change it to something else?”

Al (audio): “... How about we use the find method ...?”

P3 (speaking): [used the mouse highlighted one code segment
char in string s] “Ok, what should I change this to then?”

Al (audio): “You can change the if char ... For example, you
could try if char ... [P3 started to type to follow Al's suggestion
as char.find(char)??? in the practice task] does not equal
negative one, this will check ..”

[P3 switched back to Al Stream interface and went through the
transcript using the mouse. P3 copied “if s.find(char)!=-1”
in the transcript to replace their “if char.find(char):” line
in the practice task]

P3 (speaking): “how does the find method work?”

Al (audio): “The find method returns the index of ..”

We observed instances where students conducted multiple-round
voice conversations with Al while sharing a screen as the contex-
tual foundation. Students could ask clarification questions about
details in the Al reply (like P3 above), release the next request (like
P4 above), and even check their new progress after following AI’s

Exploring Student Choice and the Use of Multimodal Generative Al in Programming Learning

suggestions. For example, P8 checked their new modification after
listening to AI’s suggestion:
Al (audio): “You can start by using 2 pointers, one for each string
..> [P8 wrote some code in the practice task screen]
P8 (speaking): [looked at the practice task screen] “like this?”
Al (audio): “Yes, that’s a good start. You’ll need to add the logic
to compare the characters and move the pointers accordingly”

P8 (speaking): [looked at the practice task screen] “What do you
mean by pointer?”

Al (audio): “I meant 2 pointers to keep track of the current
position you’re looking at in each string ..” [P8 wrote two lines
in the practice task screen]

P8 (speaking): [looked at the practice task screen] “like this?”

Al (audio): “Exactly. Now, inside the loops, you’ll need to ..”

4.1.2 Screenshot Image. In 10 cases (around 30%), students up-
loaded screenshot images to capture their problem-solving context
(e.g., problem description, code progress, and the error feedback).
As for instruction input modality, only one student (P6) provided
a screenshot of the problem description. Others combined screen-
shots with typed instruction prompts to guide the Al but might
not do so in a single input attempt. For example, after reading
the description, P1 first sent a problem description screenshot im-
age, quickly skimmed the Al response, and then typed a follow-up
question as "how would you proceed to code this?". After
completing a solution, P1 took another screenshot of the current
solution, and typed as "is this a correct implementation?".
Two output delivery modalities were available for this input: the
audio with textual transcript and pure textual output. Observed
in 5 of 12 screenshot-input outputs (42%), the students chose to
listen to audio with transcripts. For example, P10 screenshoted their
current block arrangement and received Al audio. After listening
to the audio, P10 read the transcript again and backed to move
two block. Then P10 sent a new screenshot with the updated block
arrangement to check its correctness. In the rest output cases (58%),
the students chose to read the pure textual output.
4.1.3 Type or Paste. With other modalities available, not many use
the traditional modality of typing or copy-pasting context. How-
ever, in around 14% of the times (5 cases), students either pasted
context into the input field or skipped this step. In such cases,
the students always typed their instructions. For instance, after
putting some blocks in the solution panel, P14 copied the prob-
lem description, pasted and typed as "[Problem description],
Explain exactly what is being asked for me to do without
generating the actual code> The example inputs are: [the
given examples]" We only observed one case where the student
(P12) typed their instructions but chose to receive the Al-generated
output via audio, without clear sign of reading. In other times,
students read and even copy the textual Al-generated output.

4.2 Why: Factors Influencing Modality Choices

We structured the results by first presenting shared factors that
influenced both input and output modality decisions, followed by
reasons specific to input modality choices, and then the reasons
associated with output modality choices.

4.2.1 Universal Considerations in Selecting Input and Output Modal-
ities. The perceived time to reach a goal. One main reason that

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

influences students’ overall modality choice is the perceived time
investment for a given Al modality combination for a given goal.
For example, P15 found time pressure to be one main factor for
using screenshot, "when I take that screenshot, I can let Al do its
own thing while I could possibly be working on something else. That’s
definitely a big time saver, especially if I'm working on something that
has a very close deadline." P11 preferred speech over type because
"it helps me communicate faster, rather than type out my answers".

The physical setting and devices. This is a key factor in deter-
mining whether students opt for auditory-related modalities. For
instance, P2 emphasized transcript as an important complement to
audio output because "there might be an issue with my audio, maybe
my headphones, or my earphones, or maybe my laptop speakers, and
I think that this transcript kind of supplements that and basically
eliminates any of those issues" P7 treated audio output as a comple-
ment to textual output as when reading was impractical, "if I don’t
have the time to read the text, and then it (audio output) would be
helpful, like when I'm on the go, I'm on the bus and I want to hear it."

The degree to which Al simulates human. Screen-sharing,
speech input with audio output was favored by students who valued
AT’s human-like tutoring: "I'm kind of connecting this to real life
what I would do with like my friends or peers, or maybe instructors as
well." (P15) And P7 favored the speech input because it "almost like
interacting with a human being." Nevertheless, this does not mean
Al interactions should fully mimic real human conversation, since
students still wanted more dominant control. As P2 noted, "I wish
it’s like push to talk instead of constantly on." P16 was desatisfied with
the inability of interrupt an Al output, indicated by a series of "no"s
("Ouch, no, no, no, no, no. Hold on."), clearly signaling dissatisfaction.

Personal preference for learning. Sometimes students just

chose the modality they personally favored. For example, P13 pre-
ferred typing over speaking as input because "I have a little bit of a
paranoia with random sites who are taking voice input." Conversely,
P15 preferred audio than textual output considering "me personally,
Idon’t really like looking at really long articles like Wikipedia articles.
I find that really hard to digest. I like to listen to information and kind
of soak it up through that way."
4.2.2 Reasons Specific for Input Modality. Seamless versus in-
tentional spacing. Preferred intervals between Al rounds varied.
Students who valued seamless interaction liked the use of screen-
sharing and microphone to speak, "..talking to it is much better than
typing out, because maybe you’re thinking of something, so you just
want to try to say it out to it and then it’ll capture what you’re trying
to say at that moment in time." (P2) Conversely, some preferred
typing input for the time afforded to formulate their questions. As
P6 raised, "typing out my problems, gives me the opportunity to really
go into detail and think about it more". P6 also reported a feeling
of rush caused by speaking and screen-sharing, "it has to be a bit
more rushed, and I have to come up with things more on the spot. So I
prefer text and being able to upload screenshots.”

Possible redundant effort for students. Screen-sharing with
speech input allows the continuous context updates, which was
valued by students who wanted to minimize effort to provide re-
peatedly changing information. As P2 described, "I don’t have to
switch screens. I think with LLMs, you have to switch and then type
out your entire message before you can get an answer." P12 even
flagged the potential to lose context when using traditional typing

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

input, "before they have in this feature, I have to like copy, paste and
might even lose some data in this process.”

Scope of presentation format coverage. Screen-sharing and
screenshot images afforded more information formats than typing
input. P12 pointed it out as "if I have text in the image that I can’t
copy, I could just take a screenshot and send the whole thing." P9 also
valued screen-sharing’s broader format coverage scope for mixed-
up code puzzles, "this was about placing blocks, and this wasn’t just
text I could copy directly. It was more about the orientation position
of my block, so something like ... visual thing ... it makes a lot more
sense if the Al could see my screen in real time."

Difficulty with natural language articulation. When a clear

textual description was challenging, students favored other modal-
ities over pure text input. According to P14, "A photo is useful in
cases when you need help on concepts you do not understand well
enough to explain for proper assistance”
4.2.3 Reasons Specific for Output Modality. Standards of a good
Al answer. What students prioritized in Al answers influenced
their output choice. For example, P3 liked audio output for ideation,
"for ideas, the audio was like the best. Because when you’re thinking ...
it kind of keeps up with your thought process.” But when it comes to
syntax that requires higher precision, many wanted textual output,
"for that (syntax) I found the text helpful. It would have been even
more helpful if it was able to generate like code blocks." (P3)

Opportunity to do asynchronous revisit. Compared to audio
output, textual output allowed for rereading and closer digest, "put
out the voice as well as transcript, even though I could hear the answer,
I would like go back and read it, because that’s sort of what sticks
with me more, and I can just go back and check, highlight certain
things, or copy-paste.” (P6) and "if I forgot what it said or I wanted
to go back and review, the transcript was just there, right below the
recording (audio), so that was helpful" (P4)

5 Discussion and Future Work

Moving from text-focused to a more flexible multimodal interaction
with GenAl, this work enriched the modality dimension of using
GenAl in programming learning. As one of the early efforts in this
area, this study reveals students’ initial perceptions among various
modality options. It opened up new directions for future work.
We found that students have varied preferences for modalities
when using Al to tackle programming problems. Some particularly
appreciated the combination of screen sharing, voice input, and
audio output, as it closely resembled the interactive dynamic of
human tutoring, much like virtual office hours [16, 28]. This aligns
with earlier efforts to use text-to-speech for human-like voice Al
tutors in multimedia learning [11, 27]. They found that a human-
like voice effectively facilitates social connections with learners
and decreased cognitive load [27]. However, some students still
favored more spaced interaction with AI (screenshot images and
typing as input) and textual output. One obvious reason is that
many commercial Al tools still focus on text modalities. Our study
may be their first time using other modalities, so they were not
yet familiar with them. Furthermore, students were self-regulated
[44] in knowing which modality is the most appropriate under
different learning situations. Some valued the intentional spacing
brought by typing input to formulate their thinking, and some
strategically selected output modalities depending on whether they

Xinying Hou et al.

were at ideation or detail processing stages. Their personal learning
preference also impacted the modality choices [37].

For multimodal complementarity, even when students chose to
use the synchronous modalities, many emphasized the importance
of the textual transcript for asynchronous review. This is because
transcripts have been shown to aid understanding during meetings
[15] and improve instructional video comprehension [18].

This work serves as a starting point to open new directions
to integrate multimodal GenAlI in CS education. From an ed-
ucator’s perspective, as students hold different modality prefer-
ences, it is worthwhile for instructors to introduce different GenAI
modalities to students to fit their learning preferences. In addition,
instructors should choose the modalities carefully when integrating
GenAl into instructional activities. From a tool design perspective,
it is important to give students the agency to shift among different
modality combinations. Moreover, some students found that some-
times Al talks too much, or students could not disturb or correct
their meaning. We recommend giving students more control over
the conversation flow, such as the ability to initiate the dialogue on
their own terms and to interrupt it mid-response.

Furthermore, while we focus on the use of multi-modality GenAI
in programming learning, we envision its extension beyond pro-
gramming learning. Auditory-based modalities are suitable for tech-
nical communication training, especially for conversational pro-
grammers [10], while multi-modalities can provide a foundation
for diverse real-world training when AI takes different roles; (1)
technical interview preparation when Al is asked to assume roles
such as interviewers; and (2) CS instructor training and TA training
to manage office hours [3] where Al takes the role of students.

6 Limitations

This study involved a small group of undergraduate students from
a single institution, which limits its generalizability across con-
texts. Also, we focused on short Python programming questions;
future work should examine more complex, open-ended tasks and
other programming languages. In addition, as participants were
new to multiple GenAl modalities, their behaviors may change with
routine use. Finally, we lacked sufficient evidence on students’ per-
sonalization of the AT’s voice or language, which may be especially
relevant for non-native English speakers.

7 Conclusion

This work explored how students used multimodal GenAl to solve
programming problems. We observed varied preferences on stu-
dents’ modality choices with diverse underlying criteria. Some
preferred Al interaction that felt more seamless and human tu-
toring, while others remained with traditional text-based interac-
tion. The underlying reasons included the nature of the task (e.g.,
time given, physical environment, good Al answer standards) and
students’ personal preferences (e.g., seamless communication vs.
intentional pause and spacing for articulating questions). These
insights show key directions for future learning experience design:
enabling learners to seamlessly switch modalities, informing Al-
driven educational tools across diverse contexts, and predicting a
new era of multimodal Al-enhanced education.

Exploring Student Choice and the Use of Multimodal Generative Al in Programming Learning

References

(1]

A

=
&

[10

(1]

[12

[13

[14

[15]

[16

[17

(18]

[19

[20

[21

[22

[23]

Donnie Adams, Kee-Man Chuah, Edward Devadason, and Muhammad Shamshi-
nor Abdul Azzis. 2024. From novice to navigator: Students’academic help-seeking
behaviour, readiness, and perceived usefulness of ChatGPT in learning. Education
and Information Technologies 29, 11 (2024), 13617-13634.

Hikari Ando, Rosanna Cousins, and Carolyn Young. 2014. Achieving saturation
in thematic analysis: Development and refinement of a codebook. Comprehensive
Psychology 3 (2014), 03-CP.

Michael Ball, Andrew DeOrio, Justin Hsia, and Adam Blank. 2021. Teaching TAs
to Teach: Strategies for TA Training. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. 461-462.

Averi Bates, Ryan Vavricka, Shane Carleton, Ruosi Shao, and Chongle Pan. 2025.
Unified modeling language code generation from diagram images using multi-
modal large language models. Machine Learning with Applications (June 2025).
Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming is hard-or at least it
used to be: Educational opportunities and challenges of ai code generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education.
500-506.

Virginia Braun and Victoria Clarke. 2019. Reflecting on reflexive thematic analysis.
Qualitative research in sport, exercise and health 11, 4 (2019), 589-597.

John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated cognition and
the culture of learning. 1989 18, 1 (1989), 32-42.

Kevin Buffardi and Richert Wang. 2022. Integrating Videos with Programming
Practice. In Proceedings of the 27th ACM Conference on on Innovation and Technol-
ogy in Computer Science Education Vol. 1 (ITiCSE °22).

Doga Cambaz and Xiaoling Zhang. 2024. Use of ai-driven code generation
models in teaching and learning programming: a systematic literature review. In
Proceedings of the 55th ACM Technical Symposium on Computer Science Education
V. 1.172-178.

Parmit K Chilana, Rishabh Singh, and Philip J Guo. 2016. Understanding conver-
sational programmers: A perspective from the software industry. In Proceedings
of the 2016 CHI conference on human factors in computing systems. 1462-1472.
Scotty D Craig and Noah L Schroeder. 2017. Reconsidering the voice effect when
learning from a virtual human. Computers & Education 114 (2017), 193-205.
Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A Becker, and Brent N Reeves. 2024. Prompt Problems: A new
programming exercise for the generative Al era. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1. 296-302.

Daniele Di Mitri, Jan Schneider, and Hendrik Drachsler. 2023. The Rise of Multi-
modal Tutors in Education. Springer Nature Singapore.

Barbara J Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S Miller, Briana B Morrison, Janice L Pearce, and Susan H Rodger.
2022. Parsons problems and beyond: Systematic literature review and empirical
study designs. Proceedings of the 2022 Working Group Reports on Innovation and
Technology in Computer Science Education (2022), 191-234.

Ge Gao, Naomi Yamashita, Ari MJ Hautasaari, Andy Echenique, and Susan R
Fussell. 2014. Effects of public vs. private automated transcripts on multiparty
communication between native and non-native English speakers. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 843-852.
Zhikai Gao, Sarah Heckman, and Collin Lynch. 2022. Who Uses Office Hours? A
Comparison of In-Person and Virtual Office Hours Utilization. In Proceedings of
the 53rd ACM Technical Symposium on Computer Science Education (SIGCSE ’22).
Joseph F. Grafsgaard, Joseph B. Wiggins, Kristy Elizabeth Boyer, Eric N. Wiebe,
and James C. Lester. 2013. Modeling student programming with multimodal learn-
ing analytics (abstract only). In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education (SIGCSE ’13).

Maja Grgurovi¢ and Volker Hegelheimer. 2007. Help options and multimedia
listening: Students’ use of subtitles and the transcript. (2007).

Sebastian Gutierrez, Irene Hou, Jihye Lee, Kenneth Angelikas, Owen Man, Sophia
Mettille, James Prather, Paul Denny, and Stephen MacNeil. 2025. Seeing the Forest
and the Trees: Solving Visual Graph and Tree Based Data Structure Problems
using Large Multimodal Models. In Proceedings of the 27th Australasian Computing
Education Conference (ACE °25).

Irene Hou, Owen Man, Sophia Mettille, Sebastian Gutierrez, Kenneth Angelikas,
and Stephen MacNeil. 2024. More robots are coming: large multimodal models
(ChatGPT) can solve visually diverse images of Parsons problems. In Proceedings
of the 26th Australasian Computing Education Conference. 29-38.

Xinying Hou, Zihan Wu, Xu Wang, and Barbara J Ericson. 2024. Codetailor:
Llm-powered personalized parsons puzzles for engaging support while learning
programming. In Proceedings of the 11th ACM Conference on Learning@Scale.
51-62.

Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh Kapoor, and Shashwat
Gulyani. 2019. Sketch2Code: Transformation of Sketches to Ul in Real-time Using
Deep Neural Network. arXiv:1910.08930 [cs.CV]

Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2023. How novices use LLM-based code generators

[24

[25]

[26

[27]

[28

[29

[31

[32

[33

[34

[35

[36

[37

(38]

[40

[41

[42

[44

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

to solve CS1 coding tasks in a self-paced learning environment. In Proceedings
of the 23rd Koli calling international conference on computing education research.
1-12.

Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. Codeaid: Evaluating
a classroom deployment of an llm-based programming assistant that balances
student and educator needs. In Proceedings of the 2024 chi conference on human
factors in computing systems. 1-20.

Harsh Kumar, Ruiwei Xiao, Benjamin Lawson, Ilya Musabirov, Jiakai Shi, Xinyuan
Wang, Huayin Luo, Joseph Jay Williams, Anna N Rafferty, John Stamper, et al.
2024. Supporting self-reflection at scale with large language models: Insights
from randomized field experiments in classrooms. In Proceedings of the eleventh
ACM conference on learning@ scale. 86—97.

Ryan Li, Yanzhe Zhang, and Diyi Yang. 2024. Sketch2Code: Evaluating Vision-
Language Models for Interactive Web Design Prototyping. arXiv preprint
arXiv:2410.16232 (2024).

Tze Wei Liew, Su-Mae Tan, Wei Ming Pang, Mohammad Tariqul Islam Khan,
and Si Na Kew. 2023. I am Alexa, your virtual tutor!: The effects of Amazon
Alexa’s text-to-speech voice enthusiasm in a multimedia learning environment.
Education and information technologies 28, 2 (2023), 1455-1489.

David J. Malan. 2009. Virtualizing office hours in CS 50. In Proceedings of the
14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE "09). doi:10.1145/1562877.1562969

Richard E Mayer. 2005. Cognitive theory of multimedia learning. The Cambridge
handbook of multimedia learning (2005).

Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276-282.

Sadia Nowrin and Keith Vertanen. 2023. Programming by Voice: Exploring User
Preferences and Speaking Styles. In Proceedings of the 5th International Conference
on Conversational User Interfaces. 1-13.

Eng Lieh Ouh, Kar Way Tan, Siaw Ling Lo, and Benjamin Kok Siew Gan. 2025.
Evaluating ChatGPT to Answer Multi-Modal Exercises in Computer Science Ed-
ucation. In Proceedings of the 30th ACM Conference on Innovation and Technology
in Computer Science Education V. 1. 58—64.

Nishat Raihan, Mohammed Latif Siddiq, Joanna CS Santos, and Marcos Zampieri.
2025. Large language models in computer science education: A systematic litera-
ture review. In Proceedings of the 56th ACM Technical Symposium on Computer
Science Education V. 1. 938-944.

Michael Sankey, Dawn Birch, and Michael W Gardiner. 2010. Engaging students
through multimodal learning environments: The journey continues. Proceedings
of the 27th Australasian Society for Computers in Learning in Tertiary Education
(2010), 852-863.

John Sweller. 1988. Cognitive Load During Problem Solving: Effects on Learning.
Cognitive Science 12, 2 (1988), 257-285. d0i:10.1207/s15516709cog1202_4

John Sweller, Jeroen J.G. van Merrienboer, and Fred G.W.C. Paas. 1998. Cognitive
Architecture and Instructional Design. Educational psychology review 10, 3 (Sept.
1998), 251-296. doi:10.1023/A:1022193728205

Huong May Truong. 2016. Integrating learning styles and adaptive e-learning
system: Current developments, problems and opportunities. Computers in human
behavior 55 (2016), 1185-1193.

Lev Semenovich Vygotsky and Michael Cole. 1978. Mind in society: Development
of higher psychological processes. Harvard university press.

Amber Wagner, Ramaraju Rudraraju, Srinivasa Datla, Avishek Banerjee, Mandar
Sudame, and Jeff Gray. 2012. Programming by voice: A hands-free approach for
motorically challenged children. In CHI'12 Extended Abstracts on Human Factors
in Computing Systems. 2087-2092.

Ruiwei Xiao, Xinying Hou, and John Stamper. 2024. Exploring how multiple
levels of GPT-generated programming hints support or disappoint novices. In
Extended Abstracts of the CHI Conference on Human Factors in Computing Systems.
1-10.

Ruiwei Xiao, Xinying Hou, Runlong Ye, Majeed Kazemitabaar, Nicholas Di-
ana, Michael Liut, and John Stamper. 2025. Improving Student-Al Interaction
Through Pedagogical Prompting: An Example in Computer Science Education.
arXiv:2506.19107 [cs.HC]

Lixiang Yan, Vanessa Echeverria, Yuegiao Jin, Gloria Fernandez-Nieto, Linxuan
Zhao, Xinyu Li, Riordan Alfredo, Zachari Swiecki, Dragan Gasevi¢, and Roberto
Martinez-Maldonado. 2024. Evidence-based multimodal learning analytics for
feedback and reflection in collaborative learning. British Journal of Educational
Technology 55, 5 (2024), 1900-1925.

Ryan Yen, Jian Zhao, and Daniel Vogel. 2025. Code Shaping: Iterative Code
Editing with Free-form Al-Interpreted Sketching. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems. 1-17.

Barry J Zimmerman and Dale H Schunk. 2011. Self-regulated learning and
performance: An introduction and an overview. Handbook of self-regulation of
learning and performance (2011), 15-26.

https://arxiv.org/abs/1910.08930
https://doi.org/10.1145/1562877.1562969
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1023/A:1022193728205
https://arxiv.org/abs/2506.19107

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Materials
	3.2 Procedure
	3.3 Data Analysis

	4 Results
	4.1 What & How: Students' Input-Output Modality Choices
	4.2 Why: Factors Influencing Modality Choices

	5 Discussion and Future Work
	6 Limitations
	7 Conclusion
	References

