Using Adaptive Parsons Problems to Scaffold Write-Code
Problems

Xinying Hou
xyhou@umich.edu
University of Michigan
Ann Arbor, Michigan, United States

ABSTRACT

In this paper, we explore using Parsons problems to scaffold novice
programmers who are struggling while solving write-code prob-
lems. Parsons problems, in which students put mixed-up code
blocks in order, can be created quickly and already serve thousands
of students while other types of programming support methods
are expensive to develop or do not scale. We conducted two stud-
ies in which novices were given equivalent Parsons problems as
optional scaffolding while solving write-code problems. We inves-
tigated when, why, and how students used the Parsons problems
as well as their perceptions of the benefits and challenges. A think-
aloud observational study with 11 undergraduate students showed
that students utilized the Parsons problem before writing a solu-
tion to get ideas about where to start; during writing a solution
when they were stuck; and after writing a solution to debug errors
and look for better strategies. Semi-structured interviews with the
same 11 undergraduate students provided evidence that using Par-
sons problems to scaffold write-code problems helped students to
reduce the difficulty, reduce the problem completion time, learn
problem-solving strategies, and refine their programming knowl-
edge. However, some students found them less useful if the Parsons
solution did not match their approach or if they did not understand
the solution. We then conducted a between-subjects classroom
study with 81 undergraduate students to investigate the effects on
learning. We found that students who received Parsons problems
as scaffolding during write-code problems spent significantly less
time solving those problems. However, there was no significant
learning gain in either condition from pretest to posttest. We also
discuss the design implications of our findings.

CCS CONCEPTS

» Applied computing — Education; Interactive learning envi-
ronments; Computer-assisted instruction.

KEYWORDS

Parsons Problems, Introductory Programming, Scaffolding, Help-
Seeking, Code Writing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER 22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9194-8/22/08...$15.00
https://doi.org/10.1145/3501385.3543977

Barbara Jane Ericson
barbarer@umich.edu
University of Michigan
Ann Arbor, Michigan, United States

Xu Wang

xwanghci@umich.edu
University of Michigan
Ann Arbor, Michigan, United States

ACM Reference Format:

Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adap-
tive Parsons Problems to Scaffold Write-Code Problems. In Proceedings
of Proceedings of the 2022 ACM Conference on International Computing
Education Research V.1 (ICER ’22). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3501385.3543977

1 INTRODUCTION

One of the primary goals for introductory programming classes is
to develop skill in writing code [42, 80, 81]. However, a growing
number of studies suggest that writing code can be prohibitively
challenging [63] for novice programmers for various reasons, such
as the gap between theoretical concepts and practice [65] and high
cognitive load [73]. Students spend many frustrating hours trying
to figure out why their program fails to compile or does not produce
the expected output [6]. Such frustration is one reason for the high
drop-out and failure rates in introductory programming courses
[77].

To tackle this issue, prior work has investigated different scaf-
folding approaches to assist students. The term "scaffolding" is used
to describe the assistance given to students so that they can com-
plete a task that is otherwise out of reach [16]. When learning a
subject matter, one-on-one tutoring has been found to be more
effective than typical classroom instruction with just one instructor
[9]. However, it would be too costly to provide one-on-one tutor-
ing in undergraduate programming courses due to their huge size
[27]. Computer-based scaffolding techniques could be scaled to
reach thousands of students [56]. One notable approach is timely
and personalized programming hints from intelligent tutoring sys-
tems (ITS) [57]. Nevertheless, ITS have not been widely adopted in
higher education due to the time and cost of developing such sys-
tems [3, 37]. To reduce the cost, ITS researchers have explored using
data-driven technologies to generate hints automatically [59, 62].
Despite previous research demonstrating the possibility of employ-
ing these automated hints to aid students when solving write-code
problems [32], there are still several barriers to scaling the use of
those techniques. First, the quality of automatically generated hints
varies significantly, and low-quality hints might prevent students
from seeking help [57]. Also, existing systems provide help based on
the student’s current code, which may not be sufficient for novices
who have difficulty determining how to begin and therefore require
more comprehensive help [46, 63]. In addition, hints generated by
one system are hard to implement or transfer to other systems [32].
As a result, there is still a need for a more scalable, low-cost, easy-
to-implement, and high-quality solution that will allow students of
various levels to succeed on write-code problems.

Parsons problems, an increasingly popular programming exer-
cise that requires students to place mixed-up code blocks in the

https://orcid.org/0000-0002-1182-5839
https://orcid.org/0000-0001-6881-8341
https://orcid.org/0000-0001-5551-0815
https://doi.org/10.1145/3501385.3543977
https://doi.org/10.1145/3501385.3543977

ICER °22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Finish the function below to return True if there are at least two items in the list nums that are
adjacent and both equal to 2, otherwise retum False. For example, return True for [1, 2, 2] since
there are two adjacent items equal to 2 (at index 1 and 2) and False for [2, 1, 2] since the 2's are
not adjacent.

m 3/20/2022, 12:08:52 AM - 9 of 8 Share Code
def has2z({nums):
for i in range(len(nums)-1):
if nums[{i] == 2 and nums[i-1] == 2:
return True
return False
Result| Actual Value | Expected Value Notes
Fail False True has22([1, 2, 2])
Pass False False has22((1, 2,1, 2]
Fall True False has22([2, 1, 2])
Pass True True has22([2, 2, 1])
Pass False False has22([3, 4, 2]}
Pass False False has22([2])
Pass False False has22(]))

You passed: 71.42857142857143% of the tests

Figure 1: Screenshot of a write-code problem with unit test
results

correct order [53], could potentially scaffold novices who are strug-
gling while writing code from scratch. Although Parsons problems
have been used as practice and summative assessment questions
[19], to our knowledge, no prior studies have investigated the use
of Parsons problems to scaffold write-code problems. Neverthe-
less, learners could benefit from Parsons problems in a variety of
ways. For instance, Parsons problems can decrease the required
cognitive load by constraining the problem space and providing pre-
written code pieces yet still exercise students’ higher-level thinking
skills [30]. Also, compared to worked examples that provide pas-
sive guidelines and do not promote active learning [15], Parsons
problems allow more interactivity and most students find them
engaging [19, 53]. These results indicate that Parsons problems
have the potential to provide effective scaffolding for write-code
problems.

This research examined the impact of using Parsons problems
to scaffold students while they solve write-code problems. We con-
ducted our studies in Runestone, a free e-book platform. In Runestone,
students can write and execute code and receive immediate feed-
back from unit test results and error messages (Figure 1). Our studies
added an equivalent optional Parsons problem to each write-code
problem. Students could display and solve the equivalent Parsons
problem in a preview window (Figure 2), but were still required to
solve the write-code problem. Students could not copy and paste the
Parsons problem solution to the write-code problem, they had to at
least retype the solution. Our research questions were as follows.

e RQ1: When, why, and how do students use Parsons problems
to scaffold write-code problems?

e RQ2: What are the perceived benefits and challenges to using
Parsons problems to scaffold write-code problems?

e RQ3: What is the effect of using Parsons problems as scaf-
folding to write-code problems on learning?

Xinying Hou, Barbara Jane Ericson, and Xu Wang

Figure 2: Screenshot of using a Parsons problem to scaffold a
write-code problem

2 RELATED WORK

2.1 Parsons problems

In the original Parsons problems, Parsons and Haden provided
students with a problem description and a set of drag-and-drop
code fragments [53]. Each code fragment was made up of one or
more lines, and some of the fragments contained incorrect code,
also called distractors. To complete a problem, students chose the
correct code fragments and arranged them in the correct order.
They reported that most (82%) of students thought this type of
problem was useful for learning [53].

Subsequent research has produced a range of Parsons problem
varieties that differ by dimension, how to fill in the code line, dis-
tractor and feedback. For instance, in one-dimensional Parsons
problems [53], code blocks must be organized in the right vertical
sequence, while in two-dimensional Parsons problems, the blocks
must additionally be appropriately indented horizontally [34]. In
terms of filling in the code line, Thantola et al. introduced MobilePar-
sons, a mobile phone-based 2D Parsons problem that allows users
to choose a piece of code from a list of options to complete the
code [33]. Later, Weinman et al. invented faded Parsons problems,
and in this variation, students must use valid expressions to fill in
blanks in code lines and rearrange them to create a proper program
[79]. Distractors can also be added to make the problems more chal-
lenging [18, 28, 53]. Distractor blocks typically include syntactic
or semantic flaws. There are two types of display for distractor
blocks: paired distractors, which are displayed adjacent to the cor-
rect blocks, and unpaired distractors, which are randomly mixed in
with the correct blocks. Previous research has demonstrated that
visually matched distractors make Parsons problems easier to solve
than unpaired distractors [18]. Parsons problems provide immedi-
ate feedback in one of two ways. Block-based feedback highlights
the blocks that need to be relocated or replaced [23, 53], while
execution-based feedback [79] displays the results from executing
the code, which often includes unit test results. In this research,
we used two-dimensional Parsons problems with paired distractors
(A1 in Figure 4) and block-based feedback (Figure 3).

Parsons problems have been explored for both practice [21, 25,
53] and summative assessment [13, 18, 19]. Ericson et al. found that
more students attempted to solve practice Parsons problems than
nearby multiple-choice questions in an interactive ebook [23]. Most
of the students solved the Parsons problems in one or two attempts
but some students took an unexpectedly large number of attempts

Using Adaptive Parsons Problems to Scaffold Write-Code Problems

Create the function, filter_stringsistr_list} below to take a list of strings, str_list , and retum
& new list with all the st @ order that have a length greater than 3. For
example, filter ould retumn ["'said"] and

filter_strings(["It", should return ["dark”, “night"]_

Drag from here Drop blocks here
def filter_strings(str_list):
new_list = []
for ward in str_list:
i |if lenfword) = 3:
> | new_list.append(word) 2
return new List

This block s not indented correctly. Either indent it mote by cragging It right or reduce the indention
by dragging it left.

Figure 3: Screenshot of block-based feedback in a Parsons
problem

to solve them and some gave up and never solved them [23]. Eric-
son et al. also provided evidence that students could solve Parsons
problems significantly faster than either the equivalent write-code
or fix-code problems with similar learning gains from pretest to
posttest [22, 24]. Zhi et al. found that solving blocks-based Parsons
problems improved learning efficiency on lab assignments without
reducing performance on subsequent homework or programming
assignments [83]. Morrison et al. also reported that Parsons prob-
lems were more sensitive than write-code problems for assessing
students’ learning gains [50]. While prior studies have explored Par-
sons problems as a type of practice or exam question, no previous
research has looked into Parsons problems as a type of scaffolding
for write-code problems.

Researchers have also explored changing the difficulty of a Par-
sons problem based on student performance to maximize learning
and reduce frustration. Kumar uses student performance on a previ-
ous Parsons problem to select the next Parsons problem from a pool
of possible Parsons problems [43]. Ericson et al. uses two types of
adaptation for Parsons problems: intra-problem and inter-problem
adaptation [21]. Intra-problem adaptation reduces the difficulty of
the current Parsons problem, and inter-problem adaptation affects
the difficulty of the next problem based on students’ performance
on the current problem [22]. Ericson et al. found that learners were
nearly twice as likely to correctly solve adaptive Parsons problems
than non-adaptive Parsons problems [21]. We used intra-problem
adaptation in this research (A2 in Figure 4).

2.2 Scaffolding Write-Code Problems

The term "scaffolding" was coined by Bruner and colleagues to
describe the process of providing support structures that enable
students to learn a subject or skill that is beyond their ability [10].
Vygotsky and Cole argued that learning happens when the learner
is given a task that is just beyond their ability to accomplish with-
out assistance [76]. Appropriate scaffolding will equip learners
with sufficient knowledge and skills to perform the task indepen-
dently. In traditional educational settings, scaffolding usually comes
from a human tutor, such as a teacher or advanced peer. For exam-
ple, Bloom demonstrated that one-on-one human tutoring helps
students improve their learning by two standard deviations over

ICER ’22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

typical classroom instruction with a single teacher for 30 students
[9]. However, in courses with a high student-to-teacher ratio, like
many intro-level CS courses, this type of support would be too
costly [12]. Pair programming, an example of peer-facilitated scaf-
folding, has also been proven to be beneficial [48]. Nevertheless,
working with pairs is not convenient for out-of-class assignments,
and disengagement is likely to arise due to social pressure from
peers, unwelcome interruptions, and time pressure [55].

Therefore, researchers have investigated computer-assisted scaf-
folding techniques to support code development to address these
issues. As Hmelo and Guzdial mentioned, software-enabled scaf-
folding can provide the assistance required for students to succeed
at learning-by-doing tasks [31]. One line of research focuses on
using intelligent tutoring systems (ITS) to provide formative elabo-
rated feedback and hints [61]. In traditional ITS, authors need to
spend a long time modeling the domain knowledge and tagging
possible states with hint messages. This method, however, does
not work for more open-ended and unstructured problem-solving
environments, such as writing code [61]. Therefore, recent hint
generation techniques have tried to use past student code submis-
sion data to generate next-step hints automatically [36, 45]. For
example, Rivers built ITAP, which employed a three-stage process
to generate next-step hints for student code submissions [61]. Her
initial analysis found that students with hints spent less time prac-
ticing but achieved the same learning outcomes. Nevertheless, the
inconsistency in the quality of the automated hints is still a problem,
affecting students’ trust in these systems and future help-seeking
behaviors [57]. Furthermore, automated hints rarely contain com-
prehensive guidance, such as examples, that might be leveraged to
overcome the "design barriers" experienced by beginner program-
mers [38]. As a result, by using low-level hints before starting to
program a task, some novices experienced inefficient help-seeking
outcomes [46].

Therefore, we investigated a more comprehensive scaffolding
method by providing the equivalent adaptive Parsons problem for
a write-code problem. We hypothesized that Parsons problems
would be useful in scaffolding students who are having difficulty
writing code from scratch because Parsons problems let students
apply problem-solving skills while limiting irrelevant cognitive
load [18, 71] and keep students engaged in learning [19, 53]. We
next discuss cognitive load theory and how Parsons problems may
reduce the cognitive load required for learning.

2.3 Cognitive load theory

According to cognitive load theory, the human cognitive architec-
ture is made up of numerous memory stores, including a restricted
working memory and an unlimited long-term memory [64]. Work-
ing memory is limited in terms of capacity and duration, especially
when processing new information. Cognitive load refers to the
working memory resources necessary when learning new informa-
tion [69]. The original cognitive load theory distinguished three
types of cognitive load: intrinsic, extraneous, and germane cogni-
tive load [68]. However, this last category has evolved and gone
through some conceptual adjustments recently [20, 52]. In Sweller’s
updated formulation, germane cognitive load is not an independent
source of cognitive load, and the total cognitive load is determined

ICER °22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

by the total element interactivity generated by intrinsic and extra-
neous cognitive load [67]. Taking another step further, Kalyuga
suggested a new dual intrinsic/extraneous framework and elimi-
nated the concept of germane load as a distinct type of cognitive
load [35].

After this reconceptualization, only intrinsic and extrinsic cog-
nitive load are distinguished as core cognitive load categories [70].
Intrinsic cognitive load relates to the material’s inherent difficulty,
which is mediated by the learner’s prior knowledge [70]. Instruc-
tional strategies like segmenting and pre-training can be applied
to manage intrinsic cognitive load due to over-complex content
[47]. Extraneous cognitive load is determined by how the instruc-
tional information is delivered and what the learner is expected
to perform [70]. Extraneous load can be reduced by dealing with
typical instructional elements that may cause extraneous load, such
as coherence, signaling, and redundancy [11]. Germane processing
refers to the actual working memory resources committed to deal-
ing with intrinsic cognitive load [70], and tends to play a minor
role in the new model [20].

Computer programming is a highly cognitive skill that requires
mastering multiple competencies and is recognized as being in-
herently difficult to learn, making cognitive load theory one of
the most popular theories in computing education research [7].
Previous studies have adopted a wide range of instructional rec-
ommendations provided by cognitive load theory to programming
learning. Among those effects, the usage of examples is extremely
popular in introductory programming courses [7]. Worked exam-
ples demonstrate an expert’s comprehensive solution to a problem,
allowing students to learn how to solve problems before they can
write correct code independently [1]. They are commonly used for
novice learners to reduce the cognitive load [67]. However, one
potential disadvantage is that worked examples have limited inter-
activity and do not actively engage students [70]. To address this
issue, Vieira et al. attempted to combine worked examples with
self-explanation prompts using code comments to attract learners’
attention [75]. Other scholars recommend the use of completion
problems, which provide partial solutions that students need to
finish [72]. Parsons problems are a type of completion problem.

Parsons problems can be suitable scaffolding for write-code prob-
lems since they provide the necessary support for novices when
they start writing code from scratch [30] while requiring students to
pay active attention [15] and provide desirable difficulties compared
to worked examples [70]. Desirable difficulties refer to learning
challenges that, although appearing to present challenges for the
learner and slow down the acquisition process, actually promote
long-term retention and transfer [8]. Compared to worked exam-
ples and step-by-step hints, Parsons problems provide additional
practice opportunities and may create desirable difficulties that
result in more robust learning, as shown in Harms et al. [29].

3 STUDY 1: WITHIN-SUBJECTS
THINK-ALOUD STUDY

The purpose of this study was to answer RQ1 and RQ2. We con-
ducted a think-aloud study as it enabled information extraction
regarding behavior and thoughts during programming problem
completion. We first conducted a pilot think-aloud study with 7

Xinying Hou, Barbara Jane Ericson, and Xu Wang

undergraduate students in summer 2021 on the same six write-code
problems we used in Study 1. Students thought Parsons problems
were beneficial as a type of scaffold for write-code problems in
general. They also provided suggestions on how to improve our
experimental materials. Specifically, some students reported that
having separate variable names for Parsons problems and write-
code problems was confusing; therefore, we adjusted them to be
the same. In addition, some students struggled to solve the Parsons
problems since they were not adaptive, so we modified the prob-
lems to be adaptive (A2 in Figure 4). In fall 2021, we conducted a
formal think-aloud study with 11 undergraduate students at a large
public research university in the northern United States.

3.1 Method

3.1.1 Participants. We recruited participants from an introductory
Python programming course at a public research university during
fall 2021. Students who registered for this course received a recruit-
ment announcement via Slack. Given that we were particularly
interested in understanding the impact of using Parsons problems
to scaffold novice programmers, we required that participants had
less than six months of experience programming in Python. Also,
following the IRB requirements, all of the participants had to be at
least 18 to enroll in the study. Students who met the criteria and
were willing to participate scheduled a one-hour appointment with
the researcher. After finishing the study, each participant received a
$25 Amazon gift card. Eleven participants participated in the study.
Ten (91%) of the 11 participants were aged between 18 to 20, and
one (9%) was 28. Eight (73%) of the 11 participants were female, and
three (27%) were male. All participants had less than six months of
Python coding experience, and for 10 (91%) of 11 participants, this
introductory Python course was the most advanced programming
course they had taken. Only one participant had taken a high-school
CS course in C over two years ago.

stl , below to take a list of strings, str_list, and ratum a
ngth greater than 3. For

and

Create the function, filt

the same order that h
1"1) should return

new list with all the str
example, filter,

filter_str . “night*1) should return

“ nightt

Drag from hera Do blocks here

new_list = []

for ward in mew list:
: {

for ward in str_list:
new_list. append (ward)
return ward_list
return new_list
if leniward) = 3:

if leniward) < 3:

AZ: Help me function

'
E3E=meEn

def filter_strings(str_listi:

Al: Paired Distractor

Figure 4: Screenshot of the Adaptive Parsons problem inter-
face

3.1.2 Procedure. Each think-aloud study was conducted virtually
through Zoom and lasted 60 minutes. The study started after check-
ing participants’ age and obtaining verbal consent to record. During

Using Adaptive Parsons Problems to Scaffold Write-Code Problems

the session, participants started with a sample problem with verbal
instructions to make them comfortable with our online environ-
ment (Figure 2). The instruction covered all of the features needed
in later practice and explained the relationship between the write-
code problem and Parsons problem. Participants could play around
with this sample problem and ask questions. Next, we provided a
brief think-aloud training with an example to help participants un-
derstand what they needed to do during the practice. After finishing
the onboarding tasks, we muted ourselves and let the participants
finish the six write-code problems. Each participant had 45 minutes
to complete the six problems, and they were allowed to skip one
or stop at any time. Following the whole think-aloud session, we
conducted a 5-10 minute semi-structured interview to ask about
their experience with using Parsons problems to scaffold write-
code problems (e.g. "Tell me about a time when you tried to use
a Parsons problem to help you solve a write-code problem and
found it helpful/not helpful, and why?") and suggestions for future
improvement (e.g. "What suggestions do you have for improving
the interface?"). At the end of the session, participants filled out a
demographic survey about their gender, age, and ethnicity.

3.1.3 Materials. This think-aloud study used a free and interactive
ebook on Runestone. Since one of the goals of the study was to
gather students’ opinions on Parsons problems as scaffolding, each
participant received six write-code problems with an equivalent
two-dimensional adaptive Parsons problem as optional scaffolding.

Write-code Problems We sourced the write-code problems
from an intermediate Python programming course at the same
public research university. We categorized the problems into three
difficulty levels and chose two problems from each level (easy,
medium, and hard). Our purpose was to make sure that participants
with different skill levels all had a chance to use a Parsons problem
to scaffold a write-code problem.

Parsons problems as scaffolding One recent study found that
a Parsons problem with an unusual solution increased students’
cognitive load [30]. To address this problem, we generated students’
most common solutions by clustering student-written code from
previous semesters using Abstract Syntax Tree software, and then
used the most common student solution to create the equivalent
Parsons problem (Figure 4). We also wondered if it would be better
to use distractors or not in the equivalent Parsons problems. So we
inserted paired distractors into three of the six Parsons problems
(A1 in Figure 4) and placed them interleaved across problems. The
distractor blocks were created by experts based on common syntax
or logic misunderstandings [53]. Two versions (A and B) were
created where the only difference was if A contained distractors
then B did not and vice versa as shown in Table 1. Participants
were randomly assigned to either version. Additionally, a “Help
Me” button was provided at the bottom of each Parsons problem to
assist students who struggled while solving the Parsons problem
(A2 in Figure 4). This button triggered the intra-problem adaptation
which either removed a distractor or combined two blocks into one
if the learner had made at least three attempts to solve the problem
and had more than three blocks left in the solution.

ICER ’22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Table 1: Distractor (D) Locations by Version

Version Distractor (D) Location
A D-NoD-D-NoD-D-NoD
B NoD-D-NoD-D-NoD-D

3.2 Data Analysis

We recorded the screen using Zoom for all of the think-aloud ses-
sions and transcribed the recordings. We analyzed our data using
ATLAS.ti. To answer our research questions, we devised a coding
scheme that focused on when, why, and how students used Parsons
problems, as well as the perceived benefits and challenges. To cre-
ate the coding scheme for the "when" part, we applied a deductive
approach [49] and identified four representative stages of program-
ming development from existing literature: problem understanding,
solution planning, solution implementation, and implemented so-
lution evaluation [17, 44]. For other sub-dimensions, we used an
inductive method to generate the initial coding scheme. Then two
researchers independently coded two transcripts, met to address
any disagreements and refined the coding scheme iteratively. Af-
ter finalizing the coding scheme, two researchers independently
coded four transcripts (36% of the data), and reached an intercoder
reliability score of 0.84 (alpha values > 0.80 are considered reliable
[40, 78]) using Krippendorff’s alpha [41], then one researcher coded
the rest of the transcripts. The full code scheme can be found at
https://bit.ly/3t7YpNo.

Relevant codes were grouped into themes to describe our results
in relation to the research questions. When reporting our findings,
we utilize (explanation) to clarify missing information in student
quotes and [behavior] to indicate student behaviors.

3.3 Findings

3.3.1 When and why do students use Parsons problems to scaffold
write-code problems (RQ1). In this section, we present our findings
on when and why students used Parsons problems to scaffold write-
code problems. We found that they opened the Parsons problem at
three different stages: planning a solution (36%), implementing a
solution (64%), and debugging a solution (91%). The percentages are
based on the number of students who opened the Parsons problem
at least once during that stage. The reasons for employing Parsons
problems ("why") vary according to the stage ("when").

All eleven students (100%) in our study solved at least one Par-
sons problem. Some completed the Parsons problem based on the
block-based feedback [30], while others relied on the intra-problem
adaptation (triggered by clicking "Help Me"). P3 described this pro-
cess as "Then at some point, I was like, I don’t know how to solve
this. So I clicked the Help Me button, and then I got rid of one of them
(Parsons blocks)." In addition, we also noticed some students gamed
the system when solving Parsons problems, where they guessed or
tested various block combinations to find the correct solution. Fol-
lowing Baker et al., gaming means abusing the software to complete
problems without having to learn [4]. We detected it mainly based
on participants’ verbal descriptions during the think-aloud. For ex-
ample, P10 expressed how she got the right solution, "[reorganized
some blocks] ... so I guess I'll check this even though I don’t think it’s
right [clicked the check button and the solution was correct] ... Oh,

https://bit.ly/3t7YpN9

ICER °22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

okay." This behavior might have negatively impacted their learning,
as they did not understand the rationale behind the correct solution.
We will discuss it more in 5.1.

Planning a solution: After reading the problem description,
four students (36%) opened the Parsons problem because they did
not know how to begin. For example, P3 stated, "I don’t know how
to start here, so Parsons thing ... [opened the Parsons problem].” And
P8 was confounded when trying to tackle specific requirements in
the problem description, "I don’t know how to do that adjacent part ...
[opened the Parsons problem].” Students were motivated to use the
Parsons problem to help them plan their initial solution. Given that
Parsons problems are constructed from a correct answer, they can
be a valuable resource to start students on the correct path. Like
P8 mentioned, she opened a Parsons problem once to "check how
many lines to expect ... to get an idea of how long it should be."

Implementing a solution: Seven students (64%) chose to open
the Parsons problem while they were implementing a solution. In
this case, students often had at least a partial solution in mind and
had already written some code. Five (71%) of the 7 students opened
the Parsons problem at this stage because they were stuck. For
instance, P8 wrote some code and said "If this is an even number
[typed some code and then deleted it] ... well let me just go look at
that (Parsons problem). This is ridiculous.” Two (29%) of the 7 students
had difficulty translating the solution into source code using their
existing Python knowledge [44]. For example, after writing 8 lines
of code, and changing line 9 twice, P4 said "Ok ... I am not sure how
to skip this next number so I am gonna look at the Parsons.” Similarly,
P10 explained her solution correctly verbally before writing code,
but paused while writing and said "I don’t know exactly how to do
that. Like, I don’t think you can do ... so I'm just gonna switch to
Parsons just to make sure."

Debugging a solution: After writing a complete solution, ten
students (91%) referred to the Parsons problem to correct their unit
test errors for at least one problem. All ten students switched to
the Parsons problem when they failed to resolve their errors. Some
students already knew where their errors were before opening
the Parsons problem, but could not solve them. For example, P6
changed a number first in the code while saying "Maybe minus 1 ...
let’s try that ... [checked the code but still failed unit tests] ... no", so
she opened the Parsons problem to help her debug. Similarly, P4
diagnosed the errors correctly, but she said "I forgot how to do the
index function so I'm gonna check the Parsons." On the other hand,
some students looked at Parsons problems when they had unit test
errors but did not know why the code was wrong. For instance, P11
said "I don’t know why it’s not working” when only passing 50% of
the unit tests, and opened up the Parsons problem.

3.3.2 How students used Parsons problems to scaffold write-code
problems (RQ1). Recall that even if students solved the Parsons
problem they still had to solve the write-code problem. They could
not just copy and paste the Parsons solution, they had to at least
retype it. This section will focus on how students used the Parsons
problem to help them finish the write-code problem. We wondered
if they would just scan the Parsons problem and not try to solve
it; would they only partially solve the problem until they figured
out what they needed and then finish writing the code; would they
solve the Parsons problem and just retype the Parsons solution

Xinying Hou, Barbara Jane Ericson, and Xu Wang

(replacing their original code); or would they solve the Parsons
problem and use that solution to modify their code.

Scan Parsons Problem: Because Parsons problems already
contain correct code fragments, four students (36%) were able to
gain information by scanning the mixed-up blocks without moving
any of them. For example, P7 opened up the Parsons problem after
diagnosing his syntax error and said "Oh I don’t remember the
method name so check the Parsons code [opened Parsons problem]
... so let’s see ... [found that method in one block] ... so let’s go back

. [changed his code, ran and passed all unit tests].” In another
example, P3 also opened a Parsons problem after getting unit test
errors and caught her syntax mistakes when comparing the mixed-
up blocks with her own code, "Oh my god, I was close [scanned
through all the blocks, and pointed to one block] ... oh the word
(the variable name) ... [closed Parsons window, modified append to
append(word), ran and passed all the unit tests].” In this situation,
students were able to fix their errors by looking over the mixed-
up blocks, thus they didn’t need to attempt to solve the Parsons
problem.

Attempt Parsons Problem: Two students (18%) were able to
debug their errors by only moving a few blocks rather than solving
the entire Parsons problem. The drag-and-drop process allowed
them to gain insight and return to work on the write-code problem.
In particular, P6 opened the Parsons problem twice when planning
a solution, and after dragging several blocks, she got a basic idea of
how to achieve the solution and started to type in the write-code
problem. Similarly, P4 opened the Parsons problem to debug, and
after dragging two blocks, she saw one block and said T used the
wrong function, let’s use module ... [modified code in write-code
problem, checked and passed all the unit tests].”

Solve and replace their code: Six students (55%) deleted their
own code in the write-code problem and retyped the Parsons solu-
tion in several problems. Four students chose to keep the Parsons
problem window open while retyping the code to match the Par-
sons solution. During this process, some students self-explained
the Parsons solution. For example, after getting a Parsons solution,
P8 typed it in the write-code problem and said, "let me copy it ...
What does the minus one do (-1 in range(len(var)-1))?" To answer her
own question, she did some tests in her code such as removing the
number. After receiving an error that said "list index out of range”,
she understood the usage and said, "Oh okay, so maybe that’s why
it was here." Two students wrote the Parsons solution in the write-
code problem after closing the Parsons problem window. Before
exiting the Parsons problem, they both explained to themselves
correctly why the mixed-up blocks were placed together.

Solve and modify their code: While some students replaced
their code with the Parsons solution, we found evidence that other
students chose to apply what they had learned to refine their exist-
ing code. Students tended to use this approach when their primary
goal was to debug their solution. Specifically, five students (45%)
first examined how the Parsons solution achieved the goal, then
went back to their code to refine it based on what they had learned
from the Parsons solution. For example, when reflecting on how
they used the Parsons problem solution in write-code problems, P5
said "T had a general idea of how to solve it, but I was having an error
message, after using (the) Parsons problem, I was able to figure out
where I messed up and I was able to fix my own code." In addition, to

Using Adaptive Parsons Problems to Scaffold Write-Code Problems

build a stronger connection between the solution and the written
draft, it was common for students to compare their code with the
Parsons solution side by side. For instance, after understanding
how the Parsons solution worked, P1 compared it with his own
code and explained "for each number if the number (explaining the
Parsons solution) ... oh the one after equals to two (realizing his error)
... so I'll go back to this [backed to change code in the write-code
problem].”

3.3.3 The benefits of using Parsons problems to scaffold write-code
problems (RQ2). To better understand student perceptions of the
benefits and challenges of using Parsons problems to scaffold write-
code problems, we conducted semi-structured interviews with the
11 undergraduate students at the end of the think-aloud sessions.
First, we will present the perceived benefits.

Reduce difficulty and completion time: Six students (55%)
stated that the Parsons problem aided them in lowering the difficulty
of the problem and speeding up the problem-solving process. For
example, P5 told us that "It kind of, because it doesn’t just give you the
answer right off the bat. They gave me like a good start to it. And then
from there, I was able to figure (it) out easily." Parsons problems also
reduced the debugging time. For example, P11 stated, "I just used the
Parsons problems to check a small mistake I did ... And I found that
instead of divide, I should do (another method)." Another student said
Parsons problems are preferable to searching on Google as "there’s
more than one way to solve some coding problems (so it takes time to
find), and it’s a little frustrating, especially when your teachers want
one method."

Learn problem-solving strategies: Most students (91%) found
Parsons problems helpful to gain a clearer understanding of how
to create a correct solution. Some students obtained new strategies,
for example, P4 explained that "It got me to think how the these steps
are like this, like the reasons behind it and why I should do it like this,
it made me think about the process of the steps that I have to take
to solve them.” For those who already had a plan for how to solve
the problem, working on Parsons problems helped them to develop
more effective strategies. Like P2 described, "When I was using a
for loop, and then I saw that the Parsons problem used a while loop. It
helps me realize that would be a better solution to that problem.”

Refine and extend existing programming knowledge: A
Parsons solution contains information about programming lan-
guage syntax and semantics. Most students (91%) mentioned that
they clarified misunderstandings by using Parsons problems. As P3
said, "But once I like, looked up the Parsons thing, I knew right away,
first of all, I got this number wrong. Like I understood why because it
was a simple mistake." In addition, Parsons solutions serve as good
examples to teach new programming language syntax. For instance,
P7 explained how Parsons problem taught him syntax knowledge,
"I don’t remember the Python syntax. So I use a Parsons problem to
view its syntax, then (I) get a better idea of how the code should be
written."

Prompt to think more deeply: When asked about the helpful-
ness of Parsons problems as a scaffolding tool, P4 compared it with
providing an answer directly, and claimed that "I really enjoyed it
(Parsons problem) because the process made me think, it is going to
be useful when I solve a different problem that is similar, rather than
Jjust like giving the answers, it really makes me think.” More students

ICER ’22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

(45%) shared something similar when asked about the use of distrac-
tors blocks in Parsons problems. Despite the fact that distractors
made the problem more challenging, they also pushed students
to think and learn more. As P8 stated, "I feel like I don’t want ev-
erything to be easy for me because I want to learn and so I think
this one (the one with distractors) was good." Students also gained
a deeper understanding by distinguishing between the distractors
and correct blocks. Like P11 said, ".. it (the one with distractors) did
help because it showed how a small difference will not work. And I
feel like for other ones (the one without distractors) ... then you don’t
think about like if you did it a different way it wouldn’t work."

3.3.4 The challenges of using Parsons problems to scaffold write-
code problems (RQ2). While there is evidence that Parsons problems
provided a wide range of help to scaffold students’ code writing,
some participants encountered challenges during this process.

Have difficulty solving the Parsons problem: Four students
(36%) faced this challenge during learning. Given that we used the
most common solution to create the Parsons problem, it was pos-
sible that students who had a different approach in mind would
experience a higher cognitive load. For example, P9 skipped one
question and stated, "I was thinking differently on how to approach
it, so it’s just the Parsons problem (solution) didn’t seem reasonable
to me." Three students (27%) also complained about the use of dis-
tractors as they made it easier to get stuck, as P3 explained "I prefer
the ones without the distractors. Because a couple of times I used
the wrong choice, so that wasn’t very helpful. And that kind of led
me astray a little bit. So it’d be easier just to have one option that is
necessary in the solution."

Have difficulty understanding the Parsons solution or
adaptation process: Four students (36%) reported this as a chal-
lenge. As previously mentioned, students might game (intentionally
or unintentionally) the system to achieve the correct solution, so
they did not gain a proper understanding of the solution and thus
felt that they had gained very little from solving the Parsons prob-
lem. For instance, when looking at the Parsons solution she created,
P8 said, "What am I doing? I mean, I kind of understood it but not re-
ally. Because I don’t know what the slash slash (floor division) means."
Sometimes the intra-problem adaptation confused the students,
as they did not understand the intention or what to do after the
adaptation. As P3 explained, "All it did was eliminate an option, it
Jjust felt like a guessing game rather than the actually learning ... And
that didn’t like help me quite understand. I was still stuck in the same
problem that I was beforehand." P6 shared the same feeling, and said,
"I tried to use the "Help Me" button, but it just kind of confused me
more ... it took it (a block) away from my code, but it still said I needed
more like lines of code.”

Help Avoidance: This refers to situations in which students
did not use the help features even when they were struggling.
We encountered two types of help avoidance: avoiding the use of
the Parsons problem and avoiding the use of the intra-problem
adaptation (triggered by clicking the "Help Me" button). Only one
student (P7) clearly expressed his avoidance of Parsons problems
as "(it) isn’t really a hint, it’s like the answer." He would prefer more
high-level guidance on the logic instead of a Parsons problem with
solution blocks. Two students (18%) avoided using the "Help Me"
button due to a desire for independence [58]. As P10 explained, "I

ICER °22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

feel like I'd rather try to figure it out myself first. So I didn’t really
want the answer to be kind of given to me more easily."

4 STUDY 2: BETWEEN-SUBJECTS CLASSROOM
STUDY

After getting evidence that students found Parsons problems help-
ful while solving write-code problems in Study 1, we investigated
the effect on learning in an authentic classroom environment. We
conducted the study at a large public research university in the
northern United States in the winter-spring semester of 2022. All
participants were enrolled in a data-oriented programming course,
which was the second required Python course for the university’s
information science majors. This course covered topics including
Python basic data structures (list, tuple, and dict), object-oriented
programming, debugging, unit testing, web scraping, regular ex-
pressions, HTML, XML, JSON, working with APIs, working with
databases, and Matplotlib.

4.1 Methods

4.1.1 Participants and Procedure. The classroom study was con-
ducted during the 80-minute lecture period in week three of the
class; students who did not attend the lecture were allowed to finish
by the end of the day. Ninety-six students participated in this study.
Students were randomly assigned to one of two conditions: Parsons-
Help condition (PH) and No-Help condition (NH). Similar to Study
1, students in the Parsons-Help (PH) condition received a text-entry
write-code interface with an equivalent two-dimensional adaptive
Parsons problem as scaffolding (Figure 2), while the No-Help (NH)
group only had the write-code interface (Figure 1). Students took
a timed pretest before solving the practice problems and a timed
posttest immediately after the practice, each for 20 minutes. Stu-
dents were instructed to spend 25 minutes solving the five practice
problems. After the study, the data from 15 students was removed
since they had not completed all of the materials or did not follow
the instructions. Our final sample included 81 students (43 students
in the PH condition and 38 students in the NH condition).

4.1.2 Materials. Study 2 used five of the six problems from study
1. The first problem was removed since most students in Study 1
solved it easily without needing the Parsons problem. The course
instructor designed the pretest and isomorphic posttest questions
to measure students’ understanding of related topics. Three types of
questions were included in the pretest and posttest: multiple-choice
questions, Parsons problems, and write-code problems. Each test
had four multiple-choice questions (2.5 points for each, 10 points
in total), one Parsons problem (10 points), and two write-code
problems (10 points for each, 20 points in total). Parsons problems
were scored by the number of lines in the correct location with
the correct indentation. Write-code problems were scored based on
the percentage of unit tests that passed. There were a total of 40
possible points per test.

4.2 Results

The distribution of the pretest score and the pre-posttest learning
gain did not meet the normality assumption, so we conducted a
group of Mann-Whitney U tests to compare the difference between

Xinying Hou, Barbara Jane Ericson, and Xu Wang

the two groups [51]. Given that these were non-parametric tests, we
utilized common-language effect size (CLES) as the effect size, using
a brute-force version of the formula given by Vargha and Delaney
[74]. There was no significant difference between the PH group and
the NH group in pretest performance (Table 2), which suggests the
randomization of our experiment was successful. However, there
was a ceiling effect in the pretest, with both groups scoring highly.
We then compared students’ learning gains by question type, as
seen in Table 3. Results indicated that there was no significant
difference between the two groups in their pre-posttest learning
gain. However, there was no significant learning gain from pretest
to posttest. This experiment was conducted in week three, and
the material was on Python basics. The material appears to have
been too easy for these students based on the high pretest score
medians (Table 2). Study 1 had been conducted on students from the
prerequisite course who had less experience than these students.

We then compared the students’ completion time between the
two conditions. This was the time to complete the five practice
problems. We first tested the relationship between completion time
and pretest, and there was no significant correlation between com-
pletion time and pretest score, r = -0.03, p = 0.773. We then applied
a Mann-Whitney U test to compare the completion time between
the two conditions, as the completion time data was not normally
distributed. Our result found that the 43 participants in the PH con-
dition (Mdn = 19.42 mins) had a significantly shorter completion
time versus the 38 participants in the NH condition (Mdn = 23.94
mins), U = 504.5, p = 0.003, CLES = 0.31. We also examined the
students’ practice outcomes between the two conditions. Practice
outcome was the percentage of unit tests students passed across the
five practice problems (e.g., 0.7 means that the student passed 70%
of the unit tests in the five practice problems). We found that there
was no significant difference in the practice outcomes between con-
ditions, U = 900.0, p = 0.420, CLES = 0.55, even though students in
the PH condition had higher practice outcomes (Mdn = 0.91) than
students in the NH condition (Mdn = 0.80).

Overall, students in the Parsons problem as scaffolding condition
had a 19% reduction in their completion time, from a median value
of 23.94 minutes to 19.42 minutes. Despite spending less time on
practice, students achieved an equal level of pretest (Table 2) to
posttest (Table 4) performance in both conditions. This suggests
that utilizing Parsons problems as scaffolding could help students
achieve equivalent outcomes (posttest scores) in significantly less
practice time. However, the median learning gain from pretest
to posttest was zero for both groups, which may mean that our
experiment materials were too fundamental for these students. The
high median pretest scores also indicate that the students had good
knowledge of the content they were tested on already.

5 DISCUSSION AND DESIGN SUGGESTIONS

In this study, we investigated the use of Parsons problems to scaf-
fold write-code problems. We conducted two studies to evaluate
the effectiveness of our approach. Our think-aloud study (Study
1) demonstrated that Parsons problems helped students solve the
write-code problems, learn new problem-solving strategies, and
refine their programming knowledge. The classroom study (Study
2) indicated that students with Parsons problems as scaffolding used

Using Adaptive Parsons Problems to Scaffold Write-Code Problems

ICER ’22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Table 2: Pretest in Parsons-Help (PH) group vs. No-Help (NH) group

Category (Max score)

Pretest (Mdn, M (SD) in score)

Mann-Whitney U

PH group (n=43) NH group (n = 38) U p-value CLES

Multiple-Choice question (10) 10.0 8.6 (2.06) 7.5 8.09 (2.21) 931.5 0.230 0.57
Parsons problem (10) 100 9.46 (1.4) 100 8.35(2.97) 959.0 0.082 0.59
Write-code problem (20) 18.18 14.03 (7.6) 18.18 15.08 (7.07) 777.5 0.702 0.48

Table 3: Pre-posttest learning gain in Parsons-Help (PH) group vs. No-Help (NH) group

Category Learning gain (min, Mdn, max, M (SD) in score) Mann-Whitney U
PH group (n = 43) NH group (n = 38) U p-value CLES
Multiple-Choice question -5 0 5 -0.12(2.11) -25 0 5 0.33 (1.66) 741.5 0.391 0.45
Parsons problem -857 0 429 -1.21(3.01) -833 0 857 -0.47(3.84) 811.5 0.959 0.50
Write-code problem 50 0 20 0.72(5.39) -100 0 10 -0.76 (3.91) 8285 0.914 0.51

significantly less time to complete practice problems compared to
those who did not. However, there were no significant learning
gains from pretest to posttest in either condition, which might indi-
cate that our experiment materials were too simple for participants
in Study 2. The high median pretest scores provide evidence that
these students already had a good grasp of the tested concepts. We
will discuss our results for RQ1 and RQ2 in this section, and RQ3
in the next section.

5.1 RQ1: Help-seeking behaviors in writing
code

We answered the "when" and "why" parts in RQ1 by revealing three
representative scenarios in Study 1, where students used Parsons
problems to scaffold their code writing. In general, those scenarios
are consistent with the help-seeking strategies identified in the lit-
erature in non-programming domains [2], such as using help when
students do not know how to begin and when debugging. Our find-
ings also surfaced specific help-seeking behaviors for write-code
problems. For example, our study revealed an important scenario
where students asked for help when they had a solution in mind
but had difficulty translating it into code [44]. In this case, Par-
sons problems helped students translate the algorithm from plain
English to code.

When it comes to the "how" part of RQ1, we found that students
interacted with the Parsons problems in four different ways. First,
in "Scan Parsons Problem" and "Attempt Parsons Problem", students
referred to Parsons problems to correct syntax errors, consistent
with the Glossary mechanism in ITS [2]. This helps students quickly
get information about syntax and apply it to the write-code problem.
Second, in "Solve and replace their code", Parsons problems were
used as a differentiated instruction tool [26] so that beginners with
less prior knowledge were not overwhelmed by the open-ended
write-code problem. In addition, in "Solve and modify their code",
students finished solving the Parsons problem first and used it as a
worked example to facilitate further understanding [66].

However, as mentioned in the challenge part, we observed some
"Help Avoidance" in Study 1. A small group of students avoided

utilizing the "Help Me" function or even the Parsons problem when
they were stuck, which has previously been seen in other program-
ming scaffolding research [46, 82]. To address this problem, we plan
to use prompts to encourage students to seek help once the system
detects many failed attempts. In addition, we also noticed gaming
behaviors when students were completing the Parsons problems,
where they tried to get the problems right without paying active
attention. Previous research suggested two possible reasons for
such behaviors when students interacted with intelligent tutor-
ing systems: (1) the primary goal of the students is to perform
rather than learn, and (2) a lack of ability and actively avoiding
challenges [5]. Future work should further investigate the underly-
ing reasons of gaming behaviors, and help students to avoid them,
such as increasing students’ self-efficacy through the right level of
scaffolding.

5.2 RQ2: Opportunities for personalized
Parsons problems to scaffold writing code

Semi-structured interviews in Study 1 revealed various benefits
of utilizing Parsons problems as scaffolding for students’ perfor-
mance and learning, as well as challenges of using Parsons problems
as scaffolding in our current design (RQ2). One significant differ-
ence between Parsons problems and writing code from scratch is
that Parsons problems constrain the problem space [71]. Parsons
problems break down a complex write-code problem into more
manageable tasks [24], which is one possible explanation for the
benefit of reducing difficulty and completion time. Based on the
challenges and benefits we discovered in our studies, we propose
three design ideas to improve the future practice of using Parsons
problems as scaffolding.

5.2.1 Personalize the Parsons problem based on the student’s solu-
tion. The first design idea is inspired by the challenge that students
had difficulty solving the Parsons problems and that students ben-
efited from learning problem-solving strategies. In our study, we
utilized the most common solution from student-written code to

ICER °22, August 7-11, 2022, Lugano and Virtual Event, Switzerland Xinying Hou, Barbara Jane Ericson, and Xu Wang

Table 4: Posttest in Parsons-Help (PH) group vs. No-Help (NH) group

Posttest (Mdn, M (SD) in score)
PH group (n =43) NH group (n = 38)

Category (Max score)

Multiple-Choice question (10) 10.0 8.49 (2.06) 10 8.42(2.06)
Parsons problem (10) 10.0 8.25(1.4) 100 7.88(1.4)
Write-code problem (20) 17.5 14.75 (7.6) 16.25 14.32(7.6)

generate the Parsons problems, which could differ from the solu-
tion path the current student was following. Under this circum-
stance, some students were able to distinguish and examine both
approaches and learn more problem-solving strategies. This is con-
sistent with a previous study [54] that found having students view
distinct code in parallel helped them achieve better learning of
procedural knowledge and develop higher flexibility in problem-
solving. Nevertheless, this may create a higher cognitive load for
other students and become a challenge. For example, some students
failed to solve the Parsons problem or did not find it helpful, as the
Parsons problem used a different strategy than their approach. This
suggests that personalized Parsons problems (e.g., ones that are
closest to the student’s current problem-solving strategy) or person-
alized feedback (e.g., explanations of the connections between the
Parsons blocks and the student code) are needed to better support
students and further decrease the unnecessary cognitive load.

5.2.2 Provide additional support on Parsons solution comprehen-
sion. The second design idea is motivated by the challenge that
students had difficulty understanding the Parsons solution or the
adaptation process and the benefit that some students used Parsons
problems to refine and extend their prior knowledge. For example,
some students self-explained while solving the Parsons problem or
reflected on the difference between the Parsons problem solution
and their own incorrect solution. These students are more likely
to identify inadequacies in their prior knowledge, correct misinter-
pretation, and demonstrate conceptual change and learning from
Parsons problems [44]. Nevertheless, other students found it chal-
lenging to understand the Parsons solution due to a lack of prior
knowledge [14]. This result implies that we could provide further
support for beginners to comprehend the Parsons problem solution
and reflect on the solution. This suggestion is consistent with pre-
vious research, which discovered that instructional explanations
can be beneficial under certain conditions because they effectively
support knowledge-construction activities [60]. Our participants
also provided similar recommendations, as P8 suggested, "I wish
there was like an explanation about what’s like [pointed to one block
in Parsons solution]." In addition, recall that the intra-problem adap-
tation confused some students as it removed or combined blocks
without any explanation. Therefore, adding more explanation could
increase the effectiveness of the current adaptation process.

5.2.3 Dynamically adjust the difficulty of the Parsons problem. The
third design idea is to augment the benefit of Parsons scaffolding in
prompting students to think more deeply and address the challenge
that students might have difficulty solving the Parsons problems
we provide. Our findings revealed that some students valued the
opportunity to think more deeply by solving the Parsons problems,

which is consistent with previous results on the desirable difficulty
introduced by adaptive Parsons problems [22]. Instead of receiving
a passive "bottom-out" hint, solving Parsons problems and recog-
nizing common mistakes from paired distractors could improve
students’ ability to identify errors. On the other hand, some stu-
dents became more perplexed specifically because of the distractors
and had difficulty solving the Parsons problems.

Inspired by the conflicting opinions on distractors and require-
ments of high-level guidance, we need to increase the adaptivity
of Parsons problems to provide more personalized and targeted
scaffolding when novices are writing code. In other words, Parsons
problems can be constructed dynamically depending on the stu-
dent’s problem-solving status when seeking assistance. Specifically,
for those who already have an idea of what to do, skeleton-style
Parsons problems can be provided, such as those that only con-
tain subgoal labels [24]. In this way, students may compare their
thought processes with the Parsons problem skeleton to decide on
next-step goals. For students with less experience, we could remove
distractors or combine some blocks in advance to provide a simpler
Parsons problem. Testing adaptive Parsons problems at different
difficulty levels provides further research opportunities to address
the "assistance dilemma" in determining the appropriate amount of
support for novice programmers [39].

6 LIMITATIONS AND FUTURE WORK

For RQ3, although we found in Study 2 that students who received
Parsons problems as scaffolding saved significant practice time, we
did not observe a significant difference in learning between the two
conditions. One potential reason is that, despite the fact that Study
1 and Study 2 used identical learning materials, students in Study 2
were recruited from a more advanced Python course (usually the
second Python course an information science major would take)
compared to Study 1. Students were expected to have more prior
programming knowledge. There might be a ceiling effect where
students were already competent in the topics we covered. Another
limitation of this work is that we performed the studies at only one
public university in the United States. We might see different help-
seeking scenarios and scaffolding effects with other demographic
groups and contexts such as MOOCs. Future work needs to explore
diverse demographic groups, additional topics, and programming
languages.

Our goal is to employ Parsons problems as a scalable and effective
scaffolding tool for write-code problems for students with different
levels of ability and/or knowledge. We are excited to pursue future
work based on the design suggestions mentioned above. First, more
research is needed to fully understand the effects of using Parsons
problems as scaffolding for write-code problems for diverse student

Using Adaptive Parsons Problems to Scaffold Write-Code Problems

groups, contexts, topics, and programming languages. Second, we
plan to provide personalized scaffolding by generating a Parsons
problem that is closest to the student’s incorrect solution. Third,
we plan to collect log data that records how students write code
and seek help on the platform to better understand their behavior.

7 CONCLUSION

In this work, we presented two studies on using Parsons problems
to scaffold write-code problems. Study 1 identified three representa-
tive scenarios, four use cases, and reported student perceptions on
the benefits and challenges of using Parsons problems as scaffolding.
Our findings showed that this approach can help students refine
and extend existing knowledge, reduce the difficulty of the prob-
lem, reduce the problem completion time, learn problem-solving
strategies, and reflect on their code writing process. In Study 2, we
found that using Parsons problems to scaffold write-code problems
could significantly save students’ practice time. Moving forward,
we plan to improve our design and increase the adaptivity of the
scaffolding to enhance student learning.

8 ACKNOWLEDGEMENTS

We thank Zihan Wu who contributed to the qualitative analyses and
the reviewers who provided valuable suggestions that improved
this paper. Some of the funding for this research came from the
National Science Foundation award DUE-2143028. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] Siti-Soraya Abdul-Rahman and Benedict Du Boulay. 2014. Learning programming
via worked-examples: Relation of learning styles to cognitive load. Computers in
Human Behavior 30 (2014), 286-298.

Vincent Aleven, Bruce McLaren, Ido Roll, and Kenneth Koedinger. 2006. To-

ward meta-cognitive tutoring: A model of help seeking with a Cognitive Tutor.
International Journal of Artificial Intelligence in Education 16, 2 (2006), 101-128.
[3] Vincent Aleven, Bruce M Mclaren, Jonathan Sewall, and Kenneth R Koedinger.
2009. A new paradigm for intelligent tutoring systems: Example-tracing tutors.
International Journal of Artificial Intelligence in Education 19, 2 (2009), 105-154.

[4] Ryan Baker, Jason Walonoski, Neil Heffernan, Ido Roll, Albert Corbett, and
Kenneth Koedinger. 2008. Why students engage in “gaming the system” behavior
in interactive learning environments. Journal of Interactive Learning Research 19,
2 (2008), 185-224.

[5] Ryan Shaun Baker, Albert T Corbett, Kenneth R Koedinger, and Angela Z Wagner.

2004. Off-task behavior in the cognitive tutor classroom: when students" game the

system". In Proceedings of the SIGCHI conference on Human factors in computing

systems. 383-390.

Klara Benda, Amy Bruckman, and Mark Guzdial. 2012. When life and learning

do not fit: Challenges of workload and communication in introductory computer

science online. ACM Transactions on Computing Education (TOCE) 12, 4 (2012),

1-38.

[7] Jodo Henrique Berssanette and Antonio Carlos de Francisco. 2021. Cognitive

Load Theory in the Context of Teaching and Learning Computer Programming:

A Systematic Literature Review. IEEE Transactions on Education (2021).

Robert A Bjork. 1994. Memory and meta-memory considerations in the training

of human beings. Metacognition: Knowing about knowing 185, 7.2 (1994).

Benjamin S Bloom. 1984. The 2 sigma problem: The search for methods of group

instruction as effective as one-to-one tutoring. Educational researcher 13, 6 (1984),

4-16.

[10] Jerome Seymour Bruner et al. 1966. Toward a theory of instruction. Vol. 59. Harvard
University Press.

[11] Unal Cakiroglu and Dilara Arzugiil Aksoy. 2017. Exploring extraneous cognitive
load in an instructional process via the web conferencing system. Behaviour &
Information Technology 36, 7 (2017), 713-725.

[12] Yan Chen, Jaylin Herskovitz, Gabriel Matute, April Wang, Sang Won Lee, Walter S
Lasecki, and Steve Oney. 2020. EdCode: Towards Personalized Support at Scale for

[2

=

l6

=

8

[9

=

[13

[14

[15

=
&

(17

[18

[19

[20

)
=

[22

[23

[28

[29

[30

[31

(32]

[33

&
=)

[35

[36]

ICER ’22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Remote Assistance in CS Education. In 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1-5.

Nick Cheng and Brian Harrington. 2017. The Code Mangler: Evaluating Cod-
ing Ability Without Writing any Code. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. 123-128.

Michelene TH Chi, Miriam Bassok, Matthew W Lewis, Peter Reimann, and Robert
Glaser. 1989. Self-explanations: How students study and use examples in learning
to solve problems. Cognitive science 13, 2 (1989), 145-182.

Michelene TH Chi and Ruth Wylie. 2014. The ICAP framework: Linking cognitive
engagement to active learning outcomes. Educational psychologist 49, 4 (2014),
219-243.

Elizabeth A Davis and Naomi Miyake. 2018. Explorations of scaffolding in
complex classroom systems. In The journal of the learning sciences. Psychology
Press, 265-272.

Fadi P Deek, Murray Turoff, and James A McHugh. 1999. A common model for
problem solving and program development. IEEE Transactions on Education 42, 4
(1999), 331-336.

Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the fourth international workshop
on computing education research. 113-124.

Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A review of research
on Parsons problems. In Proceedings of the Twenty-Second Australasian Computing
Education Conference. 195-202.

Rodrigo Duran, Albina Zavgorodniaia, and Juha Sorva. 2022. Cognitive Load
Theory in Computing Education Research: A Review. ACM Transactions on
Computing Education (TOCE) (2022).

Barbara Ericson, Austin McCall, and Kathryn Cunningham. 2019. Investigating
the affect and effect of adaptive parsons problems. In Proceedings of the 19th Koli
Calling International Conference on Computing Education Research. 1-10.
Barbara J Ericson, James D Foley, and Jochen Rick. 2018. Evaluating the efficiency
and effectiveness of adaptive parsons problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. 60-68.

Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. 2015. Analysis of
interactive features designed to enhance learning in an ebook. In Proceedings of the
Eleventh Annual International Conference on International Computing Education
Research. 169-178.

Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 20-29.

G Fabic, Antonija Mitrovic, and Kourosh Neshatian. 2017. A comparison of
different types of learning activities in a mobile Python tutor. (2017).

Kathy Gibbs and Wendi Beamish. 2020. Differentiated instruction: A program-
ming tool for inclusion. In Inclusive theory and practice in special education. IGI
Global, 174-191.

Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for
computer programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology. 599-608.

Kyle James Harms, Jason Chen, and Caitlin L Kelleher. 2016. Distractors in
Parsons problems decrease learning efficiency for young novice programmers.
In Proceedings of the 2016 ACM Conference on International Computing Education
Research. 241-250.

Kyle] Harms, Noah Rowlett, and Caitlin Kelleher. 2015. Enabling independent
learning of programming concepts through programming completion puzzles.
In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 271-279.

Carl C Haynes and Barbara J Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1-15.

Cindy E Hmelo and Mark Guzdial. 1996. Of black and glass boxes: Scaffolding
for doing and learning. (1996).

Minh Ho Chi and Syed Mustapha SMFD. 2018. Automated Data-Driven Hint
Generation in Intelligent Tutoring Systems for Code-Writing: On the Road of
Future Research. International Journal of Emerging Technologies in Learning (iJET)
3,9 (2018), 174-189.

Petri Ihantola, Juha Helminen, and Ville Karavirta. 2013. How to study program-
ming on mobile touch devices: interactive Python code exercises. In Proceedings
of the 13th Koli Calling International Conference on Computing Education Research.
51-58.

Petri Ihantola and Ville Karavirta. 2011. Two-dimensional parson’s puzzles: The
concept, tools, and first observations. Journal of Information Technology Education
10, 2 (2011), 119-132.

Slava Kalyuga. 2011. Cognitive load theory: How many types of load does it
really need? Educational Psychology Review 23, 1 (2011), 1-19.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a systematic
review of automated feedback generation for programming exercises. In Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. 41-46.

ICER °22, August 7-11, 2022, Lugano and Virtual Event, Switzerland

[37]

[38]

[39]

[40

[41

N
LS

[43]

[44

[45

[46]

[47]

[48

N
A

[53]

[54

[55

[56]

[57

[58

[59

[60]

[61]

Hassan Khosravi, Kirsty Kitto, and Joseph Jay Williams. 2019. Ripple: a crowd-
sourced adaptive platform for recommendation of learning activities. arXiv
preprint arXiv:1910.05522 (2019).

Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199-206.

Kenneth R Koedinger and Vincent Aleven. 2007. Exploring the assistance dilemma
in experiments with cognitive tutors. Educational Psychology Review 19, 3 (2007),
239-264.

Klaus Krippendorff. 2004. Reliability in content analysis: Some common mis-
conceptions and recommendations. Human communication research 30, 3 (2004),
411-433.

Klaus Krippendorff. 2011. Computing Krippendorff’s alpha-reliability. (2011).
Amruth N Kumar. 2013. A study of the influence of code-tracing problems on
code-writing skills. In Proceedings of the 18th ACM conference on Innovation and
technology in computer science education. 183-188.

Amruth N Kumar. 2018. Epplets: A tool for solving parsons puzzles. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education. 527-532.
Dastyni Loksa, Amy J Ko, Will Jernigan, Alannah Oleson, Christopher] Mendez,
and Margaret M Burnett. 2016. Programming, problem solving, and self-
awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI conference
on human factors in computing systems. 1449-1461.

Mariam MAHDAOUI, NOUH Said, My Seddiq ELKASMI ALAOUI, and Mounir
SADIQ. 2022. Comparative study between automatic hint generation approaches
in Intelligent Programming Tutors. Procedia Computer Science 198 (2022), 391—
396.

Samiha Marwan, Anay Dombe, and Thomas W Price. 2020. Unproductive help-
seeking in programming: What it is and how to address it. In Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer Science Education.
54-60.

Richard E Mayer and Roxana Moreno. 2003. Nine ways to reduce cognitive load
in multimedia learning. Educational psychologist 38, 1 (2003), 43-52.

Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fernald. 2003. The
impact of pair programming on student performance, perception and persistence.
In 25th International Conference on Software Engineering, 2003. Proceedings. IEEE,
602-607.

Matthew Miles, Michael Huberman, and J Saldana. 2013. SAGE: Qualitative data
analysis: A methods sourcebook.

Briana B Morrison, Lauren E Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals help students solve Parsons problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education. 42—-47.

Nadim Nachar et al. 2008. The Mann-Whitney U: A test for assessing whether two
independent samples come from the same distribution. Tutorials in quantitative
Methods for Psychology 4, 1 (2008), 13-20.

Fred Paas, Tamara Gog, and John Sweller. 2010. Cognitive Load Theory: New
Conceptualizations, Specifications, and Integrated Research Perspectives. Educa-
tional Psychology Review 22 (06 2010), 115-121. https://doi.org/10.1007/s10648-
010-9133-8

Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of the
8th Australasian Conference on Computing Education-Volume 52. 157-163.
Elizabeth Patitsas, Michelle Craig, and Steve Easterbrook. 2013. Comparing and
contrasting different algorithms leads to increased student learning. In Proceed-
ings of the ninth annual international ACM conference on International computing
education research. 145-152.

Laura Plonka, Helen Sharp, and Janet Van Der Linden. 2012. Disengagement
in pair programming: does it matter?. In 2012 34th international conference on
software engineering (ICSE). IEEE, 496-506.

James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First things first: Providing
metacognitive scaffolding for interpreting problem prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 531-537.
Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paaflen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A comparison of the quality of data-driven
programming hint generation algorithms. International Journal of Artificial
Intelligence in Education 29, 3 (2019), 368-395.

Thomas W Price, Zhongxiu Liu, Veronica Cateté, and Tiffany Barnes. 2017. Fac-
tors influencing students’ help-seeking behavior while programming with human
and computer tutors. In Proceedings of the 2017 ACM Conference on international
computing education research. 127-135.

Thomas W Price, Rui Zhi, and Tiffany Barnes. 2017. Hint generation under
uncertainty: The effect of hint quality on help-seeking behavior. In International
conference on artificial intelligence in education. Springer, 311-322.

Alexander Renkl. 2002. Worked-out examples: Instructional explanations support
learning by self-explanations. Learning and instruction 12, 5 (2002), 529-556.
Kelly Rivers. 2017. Automated data-driven hint generation for learning program-
ming. Ph.D. Dissertation. Carnegie Mellon University.

[62]

[63

[64

(65

=
2

[67

(68

[69

[70

<
[y

[72

[73

(74

[75

(77

[78

[79

[80

[81

[82

(83

Xinying Hou, Barbara Jane Ericson, and Xu Wang

Kelly Rivers and Kenneth R Koedinger. 2014. Automating hint generation with so-
lution space path construction. In International Conference on Intelligent Tutoring
Systems. Springer, 329-339.

Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37-64.

Wolfgang Schnotz and Christian Kiirschner. 2007. A reconsideration of cognitive
load theory. Educational psychology review 19, 4 (2007), 469-508.

Sue Sentance and Andrew Csizmadia. 2017. Computing in the curriculum: Chal-
lenges and strategies from a teacher’s perspective. Education and Information
Technologies 22, 2 (2017), 469-495.

Leonardo Silva, Antonio José Mendes, Anabela Gomes, and Gabriel Fortes Cav-
alcanti de Macédo. 2021. Regulation of learning interventions in programming
education: A systematic literature review and guideline proposition. In Pro-
ceedings of the 52nd ACM Technical Symposium on Computer Science Education.
647-653.

John Sweller. 2010. Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational psychology review 22, 2 (2010), 123-138.

John Sweller. 2011. Cognitive load theory. In Psychology of learning and motivation.
Vol. 55. Elsevier, 37-76.

John Sweller and Paul Chandler. 1994. Why some material is difficult to learn.
Cognition and instruction 12, 3 (1994), 185-233.

John Sweller, Jeroen JG van Merriénboer, and Fred Paas. 2019. Cognitive archi-
tecture and instructional design: 20 years later. Educational Psychology Review
31, 2 (2019), 261-292.

Jeroen JG Van Merriénboer. 1990. Strategies for programming instruction in
high school: Program completion vs. program generation. Journal of educational
computing research 6, 3 (1990), 265-285.

Jeroen JG Van Merriénboer and Marcel BM De Croock. 1992. Strategies for
computer-based programming instruction: Program completion vs. program
generation. Journal of Educational Computing Research 8, 3 (1992), 365-394.
Jeroen JG Van Merrienboer and Hein PM Krammer. 1987. Instructional strategies
and tactics for the design of introductory computer programming courses in
high school. Instructional Science 16, 3 (1987), 251-285.

Andras Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101-132.

Camilo Vieira, Alejandra] Magana, Michael L Falk, and R Edwin Garcia. 2017.
Writing in-code comments to self-explain in computational science and engineer-
ing education. ACM Transactions on Computing Education (TOCE) 17, 4 (2017),
1-21.

Lev Semenovich Vygotsky and Michael Cole. 1978. Mind in society: Development
of higher psychological processes. Harvard university press.

Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education. 39-44.

Field M Watts and Solaire A Finkenstaedt-Quinn. 2021. The current state of
methods for establishing reliability in qualitative chemistry education research
articles. Chemistry Education Research and Practice 22, 3 (2021), 565-578.
Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving Instruc-
tion of Programming Patterns with Faded Parsons Problems. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. 1-4.
Jacqueline Whalley and Nadia Kasto. 2014. How difficult are novice code writing
tasks? A software metrics approach. In Proceedings of the Sixteenth Australasian
Computing Education Conference-Volume 148. 105-112.

Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253.

Rui Zhi, Min Chi, Tiffany Barnes, and Thomas W Price. 2019. Evaluating the
effectiveness of parsons problems for block-based programming. In Proceedings of
the 2019 ACM Conference on International Computing Education Research. 51-59.
Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the impact of worked examples in a novice pro-
gramming environment. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 98-104.

https://doi.org/10.1007/s10648-010-9133-8
https://doi.org/10.1007/s10648-010-9133-8

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parsons problems
	2.2 Scaffolding Write-Code Problems
	2.3 Cognitive load theory

	3 Study 1: Within-subjects think-aloud study
	3.1 Method
	3.2 Data Analysis
	3.3 Findings

	4 Study 2: Between-subjects classroom study
	4.1 Methods
	4.2 Results

	5 Discussion and Design Suggestions
	5.1 RQ1: Help-seeking behaviors in writing code
	5.2 RQ2: Opportunities for personalized Parsons problems to scaffold writing code

	6 Limitations and Future work
	7 Conclusion
	8 Acknowledgements
	References

